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ON THE ¢—-EXTENSION OF THE
HARDY-LITTLEWOOD-TYPE MAXIMAL
OPERATOR RELATED TO ¢—VOLKENBORN
INTEGRAL IN THE p—-ADIC INTEGER RING

LEE-CHAE JANG*

ABSTRACT. In this paper, we define the g-extension of the Hardy-Littlewood-
type maximal operator related to ¢g-Volkenborn integral. By the meaning of
the extension of g-Volkenborn integral, we obtain the boundedness of the
g-extension of the Hardy-Littlewood-type maximal operator in the p-adic
integer ring.

1. Introduction and preliminaries

Let p be a fixed odd prime. Throughout this paper Z,Q, Z,,Q, and C,
will, respectively, denote the ring of rational integers, the field of rational
integers, the ring of p-adic rational integers, the field of p-adic rational num-
bers and the completion of algebraic closure of Q,,. Let v, be the normalized
exponential valuation of C, with |p|, = p~v»P) = p=1 When one talks of ¢-
extension, g is variously considered as an indeterminate, a complex number
q € C, or a p-adic number g € C,, cf. [1-5, 17-20]. In this paper, we assume
that ¢ € C,, |1 — ¢g|, < 1. We also use the notation

for all x € Z,,. Hence, lim,_,1[z], = z.

Let d be a fixed positive integer with (p,d) = 1. We now set
X =1limZ/dp"Z,
N

X = U a + dpZy,,
0<a<dp
(a,p)=1

a+dpNZ,={r € X|z =a (mod p™)},
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where a € Z lies in 0 < a < dp”~. For any N € N, we set

a

q
[dpN]q

and this can be extended to a distribution on Z,. We recall that p, is called

pgla + deZp) =

p-adic g-invariant distribution on Z,,.
Let C(Z,,C,) be the space of continuous function on Z, with values in
C, with supnorm || f [leo= sup,ez, [f(2)]p. The difference quotient A, f of

f is the function of two variables given by

Ay f(m, z) = flz+m)— f(fﬁ)’

m

for all x,m € Z,, m # 0. A function f : Z, — C, is said to be a Lipschitz
function if there exists a constant M > 0 (the Lipschitz constant of f) such
that

[Arf(m, )| < M,

for all m € Z,\{0} and = € Z,. The C,-linear space consisting of all Lip-
schitz function (or CM-function) is denoted by Lip(Z,, C,) (or C)(Z,,C,).
This space is a Banach space with respect to the norm ||f|1 = [|f]le V

A1 flloo (see [13]).
For f € CW(Z,,C,), the ¢-Volkenborn integral is defined by

1 =
) = [ @@ = fin S @
P 4 »=0

(see [1-15, 17-20]). By the meaning of the extension of ¢g-Volkenborn integral,
we consider the below weakly (strongly) p-adic g-invariant distribution g,

on Z, satisfying
(1.2) p"qpq(a +p"Zy) — [p”"‘l]quq(a +pn+1Zp)‘p < On,

where 6,, — 0,a € Z, and §,, is independent of a ( for strong p-adic ¢-

n

invariant distribution, d,, is replaced by cp~", where c is positive real con-

stant). Let f € C(Y(Z,,C,). For any a € Z,, define

(13) nraatp'Z) = [ i)
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where the integral is the extension of g-Volkenborn integral.

The purpose of this paper is to define the g-extension of the Hardy-
Littlewood-type maximal operator related to ¢g-Volkenborn integral and to
obtain the boundedness of the g-extension of the Hardy-Littlewood-type

maximal operator in the p-adic integer ring.

2. The g¢-extension of the Hardy-Littlewood-type maximal opera-

tor

From (1.3) and the definition of ¢g-Volkenborn integral, we first obtain the

following theorem.

THEOREM 2.1. Let u, be a strongly p-adic g-invariant distribution in
the p-adic integer ring and f € CY)(Z,,C,). Then for any r € 7 and any

a € Zy,, we have
(1) fa+p’"Zp q_prmf( )dlu’qp = fZ mf a—i—p m)dHQ( )
(2) fa+p’“2p dptger (2) = q*" [p ]q-

Proof. (1) From the equation (1.3)and the extension of g-Volkenborn in-

tegral, we can derive the result as follow:

/ ¢ f(2)dpger ()
a+pTZy

1 p" 1 a+p"x
i LS e ()
m—oo [pm-l—?”]q xzo
pvnil

WY

pM—1
= [p"]y lim [i > ¢ fla+pr)g”
P =0

m—00

— 'l [ S ) o)

Zyp
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(2) By the same method of (1), we can obtain the following.

e
a+p"Zy
p"—1

1 ~\aotp'
S S ()
m— oo [pm+T]qu Z

z=0

0

Now, we define the g-extension of the Hardy-Littlewood-type maximal
operator related to g-Volkenborn integral with a strong p-adic ¢-invariant

distribution p, in the p-adic integer ring.

DEFINITION 2.2. Let u, be a strongly p-adic g-invariant distribution in
the p-adic integer ring and f € C’(l)(Zp, C,). Then the g-extension of the
Hardy-Littlewood-type maximal operator related to q-Volkenborn integral
with a strong p-adic g-invariant distribution p, in the p-adic integer ring is
defined by

(2.1) M, ,f(a) =sup L

g7 f(x)dpger (z),
rez g (@ + P Zy) /a+p'"Zp !

for all a € Z,,.

We recall that the classical Hardy-Littlewood maximal operator M), is
defined by

1
(2.2) M, fia) = sup s /Q (@) (),
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where f : R¥ — RF is a locally bounded Lebesgue measurable function, p is
a Lebesgue measure on (—o0o,00) and the supremum is taken over all cubes
(@ which are parallel to the coordinate axes. Note that the boundedness of
the Hardy-Littlewood maximal operator serves as one of the most important
tools used in the investigation of the properties of variable exponent spaces
and operators acting on them(see [16,21]). The main idea of Definition 2.2
is to deal with the g-extension of the classical Hardy-Littlewood maximal
operator in the space of p-adic Lipschitz functions on Z, and to find the
boundedness of them. From Theorem 2.1, we first obtain the following

theorem.

THEOREM 2.3. Let p, and M, , be the same as in the definition 2.2.
Then for any f € CV(Z,,C,) and x € Z,, we have

(1) Mp,qf(x) = SUDy¢z qp%a: fzp g flx+ p’”z)duq(z),

(2) [Mp,of(2)], < suppez g [ l1lla™ e,

where l¢~ Oy = [, la™"|pdpq(2).

Proof. (1) From Theorem 2.3, we can derive the result as follows:

1 o
My f(z) = sup ———— / a7 f(2)dpger (2)
r€Z M1,qv" (v+priy) Jatpri,

_ [pr]q —z T
=g, f, 1
= sup b / ¢ f(x+p"2)dpge(2).

ZP

e
reZ qp z

(2) From (1), we can obtain the following.

1 Ty
|Mp,qf(z)], = |sup ———— / q " 7 f(2)dpger (2)
reZ Mi,qe" (x+p"Zp) Jx+pTZyp »
]. —pTZ
<sup|——— G f(2)dpger (2)
r€L | H1,qP" (w4prLp) Ja+priy P
1 —ZzZ T
=Sup — q " f(z+p"2)dug(z)
TEZ |q |p Zp »
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< sup — / 0| 1@+ 072 g (2)
TGZ ‘qp z‘p Zp ‘ ‘p P ¢

[ a7, 1 T2

< sup —
rez |47\, Jz,

— —()

= sup - . q 1.
owp eIl

O

Note that Theorem 2.3(2) implies the supnorm-inequality for the g-extension
of the Hardy-Littlewood-type maximal operator in the p-adic integer ring,

in fact, Theorem 2.3(2) implies
(2.3) [Mpaflloc = sup [My,of(@)], < cla Nz £

where ¢ = sup,.c; W. By the equation 2.3, we can obtain the follow-
P
ing corollary, which is the boundedness of the ¢-extension of the Hardy-

Littlewood-type maximal operator in the p-adic integer ring.

COROLLARY 2.4. Let g and M), be the same as in the definition 2.2.
Then M,, , is a bounded operator from C*)(Z,,C,) into L>(Z,,C,), where
L*>(Z,,C,) is the space of all p-adic supnorm-bounded functions with the
supnorm [|h||oc = sup,ez [R(2)]p for all h € L>(Zy, Cy).
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