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GALOIS ACTIONS OF A CLASS INVARIANT OVER
QUADRATIC NUMBER FIELDS WITH DISCRIMINANT
D = —3 (mod 36)

DAEYEOL JEON*

ABSTRACT. A class invariant is the value of a modular function that
generates a ring class field of an imaginary quadratic number field
such as the singular moduli of level 1. In this paper, using Shimura
Reciprocity Law, we compute the Galois actions of a class invariant
from a generalized Weber function g2 over quadratic number fields
with discriminant D = —3 (mod 36).

1. Introduction

Let K be an imaginary quadratic number field with the discriminant
D with ring of integer O = Z[] where

(1.1) f.— @, if D=0 (mod 4);
' | Y2, D=1 (mod4),

Then the theory of complex multiplication states that the modular in-
variant j(O) = j(0) generates the ring class field Ho over K with degree
[Ho : K] = h(O), the class number of O, and the conjugates of j(#) un-
der the action of Gal(Hp/K) are singular moduli j(7), where 7 := 79
is the Heegner point determined by Q(7g,1) = 0 for a positive definite
integral primitive binary quadratic forms

Q(z,y) =[a,b,c] = az? + bry + cy?

with discriminant D = b% — 4ac.
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In his Lehrbuch der Algebra [8], H. Weber calls the value of a modular
function f(0) a class invariant if we have

K(f(0)) = K(5(0)).

Despite a long history of the problem, one began to treat class in-
variants in a systemic and algorithmic way only after Shimura Reci-
procity Law [6] became available. The reciprocity law provides not
only a method of systematically determining whether f(6) is a class
invariant but also a description of the Galois conjugates of f(#) under
Gal(Hp/K). This tool is well illustrated in several works by Reinier M.
Broker, Alice Gee, and Peter Stevenhagen in [1, 3, 4, 5, 7]. Broker’s Ph.
D thesis [1] discusses p-adic theory of class invariants as well.

Gee determined the class invariants from a generalized Weber func-
tion go by using the Shimura Reciprocity Law as follows:

THEOREM 1.1. [4, p.73, Theorem 1] Let K be an imaginary quadratic
number field of discriminant D = —3 (mod 36) with the ring of integer
O = Z[f]. Suppose 0 = % as defined in (1.1). Then \/%7395(9)
gives an integral generator for Hp over K.

In this paper, we compute the Galois actions of the class invariant
\/%7393(9) under Gal(Hp/K).

2. Preliminary

Let Q% be the set of primitive quadratic forms and C(D) = Q% /T(1)
denote the form class group of discriminant D. Since Gal(Hp/K) is
isomorphic to C(D), it suffices to compute the action of a primitive
quadratic form @ = [a, b, ¢] on the class invariant \/%73 a3(0).

THEOREM 2.1. [2, 3] Let Z[6] be the ring of integers of an imaginary
quadratic number field K of discriminant D and let Q) = [a,b,c| be a
primitive quadratic form of discriminant D. Let 0 = % as defined
in (1.1) and 79 = _b+27 ;_D. Let M = My, € GL2(Z/NZ) be given as
follows: For D =0 (mod 4),

Qb
(o 1) (modp'™) ifpta;
_b
(2.1) M= < 12 OC> (modp™) ifp|a andptc;
b, b,
< 21 2_1 > (modp™) ifp|a andp|c,
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((a Y oy
(0 1> (modp™) ifpfa;

(2.2) M= (modp™) ifp|aandptc;

b1 _, _1=b_,
< 21 2_1 ) (modp™) ifp|a andp |c.

where p runs over all prime factors of N and p'»||N. Then the Galois
action of the class of [a, —b, c] in C(D) with respect to the Artin map is
given by

FO)le0d = fM(rg)
for any modular function f of level N such that f(0) € Hp. Here f™
denote the image of f under the action of M.

The action of M depends only on M, for all primes p|N where M,, €
GL2(Z/mZ) is the reduction modulo m of M. Every M,, with determi-

10 a b a b
nant x decomposes as M, _<O :r)(c d>f0rsome(c d>€

GL2(Z/mZ). Since SLo(Z/mZ) is generated by S, = < ? —01 > and

T, = L1 , it suffices to find the action of L0 , Spre and
0 1 0 =z o
Tyr» on f for all p|N. Denote ¢, by a primitive nth root of unity. For

0 =z
Q(¢w) determined by

Corp = Corp and (yrq — (yra
P D q q

( 10 ) , the action on f is given by lifting the automorphism of
p'P

for all prime factors ¢|N with ¢ # p. In order that the actions of the
matrices at different primes commute with each other, we lift S,~» and
Tyrp to matrices in SLo(Z/NZ) such that they reduce to the identity
matrix in SLo(Z/q"Z) for all g # p.

The Dedekind-eta function

o
n(z)=¢"" [[(1—q"), with q=e*"
n=1
is holomorphic and non-zero for z in the complex upper half plane H

and A(z) = n?*(z) is modular form of weight 12 with no poles or zeros
on H. Then we have generalized Weber functions as follows:
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(2.3)

n(3) () n(35°) n(32)
go(z) = 20, g1(2) = , 92(2) = , 83(2) = V35
T T I O B ATE)

Note that the functions in (2.3) are modular of level 72. For the

0 -1
1 O)andT—

generating matrices S, T € SLy(Z) given by S = (

(é 1) , the transformation rules n o S(z) = v/—izn(z) and no T'(z) =

C24m(z) hold. Hence

(24) (90791792793) oS = (937<2_42927<22491790)7
(80,91, 92,93) o T = (g1, (37 82, 80, (5403)-

3. Results

In this section, we compute the action of a primitive quadratic form
Q@ = [a,b,c] on the class invariant \/%739%(0) For that we need to find

the action of M, € GLo(Z/mZ) with m = 8,9. Combining Lemma 6 of
[3] and the transformation rule (2.4), we obtain the following:

LEMMA 3.1. The actions of ( (1) 2 ) , Sm and T,,, (m = 8,9) on
m

g7 (i=0,1,2,3) are given by

g8 9 9
10
<o x) o ol 6 g
8
Ss —9§ —gg —9% —9§
Ty —gp —91 —9 —03

10

(0 x>,:r——3k+1 ot Grel el 93
9

10

(o 0) o=-se-1] o ' dal
9
Sy —gg C3g§ Cz?g; —29§
Ty —g1 (395 —g5 (303

Using this, together with Theorem 2.1, we have the following theo-
rems.
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THEOREM 3.2. Let D = —3(mod 36) be a discriminant of an order
O = [0, 1] in an imaginary quadratic field. Let 6 = %, TQ = _I’%m
and u = (—1)b+71+“‘3+a+‘3. If [a,b, c] be a reduced primitive quadratic
form of discriminant D, then the actions of [a, —b, c] on \/%—39% (0) are as
follows:
(1) The case 31 a.
a) Ifb = 0 (mod 3), then ﬁg%(@)[“’*b’d is given by the following

table:

b=0(mod9) | b=3(mod9) | b =6 (mod9)
a=1(mod9) | —%gd(ro) | —*5ad(re) | “a3(rq)
a=2(mod9) | Hhgd(rg) | 5ud(re) | “5ad(ro)
a=4(mod) | —2gd(rg) | —A5ad(r) | —Eiad(ro)
a=5(mod9) | Fhgd(ro) | 5ed(ro) | “50d(ro)
a=7(mod9) | Fgd(rg) | —=0d(ro) | —ad(ro)
a=8(mod9) | “hgd(ro) | —=od(re) | “ad(ro)

b) If a +b = 0(mod 3), then

lowing table:

b=2(mod9) | b=5(mod9) | b =8 (mod9)
a=1(mod9) | “sgi(rg) | —=ai(re) | ai(ro)
a=4(mod9) | —ai(rg) | hai(ro) | “ai(ro)
a=T(mod9) | hai(rg) | Xiai(re) | 50i(ro)

b=1(mod9) | b=4(mod9) | b=7(mod9)
a=2(mod9) | —%gi(rg) | —2Lai(r) | ——=0i(ro)
a=5(mod) | —gi(rg) | —5ei(rg) | —2ai(ro)
a=8(mod9) | ——gi(re) | —%&a3(rg) | —Fhoi(ro)
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c) If b # 0 (mod3) and a + b = £1 (mod 3),
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is given by the following table:

b=1(mod9) | b=4(mod9) | b=7(mod9)
a=1(mod9) | —=gd(rg) | “ed(rg) | “gd(ro)
a=4(mod9) | “xgd(rg) | 5e3(re) | Shed(ro)
a=7(mod9) | “hgi(rg) | Xid(ro) | —A563(ra)

b=2(mod9) | b=5(mod9) | b =8 (mod9)
a=2(mod9) | —%gd(rg) | — 2L ad(r) | ——=03(ro)
a=5(mod9) | ——=gd(ro) | —2e3(r) | —Fad(ro)
a=8(mod9) | —%hgd(rg) | ——s03(re) | —g3(ro)

The cases 3|a and 3 1 c.
a) If b= 0(mod3), then \/%g% (0)[@=b<l is given by the following
table:

b=0(mod9) | b=3(mod9) | b =6 (mod9)
¢ =1(mod9) ffigg(m) “ig3(ro) | —503(ro)
¢=2(mod9) | — r93(TQ) 5&93(762) —\/%9%(762)
¢ = 4(mod9) ffi%(m) Y g3(r0) | —503(rq)
¢=5(mod9) | —igd(rg) | - ffisg(TQ) —=03(r0)
¢ =7(mod9) \7}993(%) ffigg(TQ) —503(70)
c=8(mod9) | —“he(ro) | —%igd(rg) | ——503(r0)
b) If b # 0 (mod 3) and b+ ¢ = £1 (mod 3), then ﬁgg(O)[“’_b’c]

is given by the following table:

b=1(mod9) | b=4(mod9) | b =7 (mod9)
u 2
a=1(modt) | H5ei(ro) | %5eb(ro) T g3(m0)
a=4(mod9) | Shg¥(rg) | d(ro) | Ligd(rg)
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a=T(mod9) | 22ai(rq) | 583(rQ) | F585(10)

b=2(mod9) | b=5(mod9) | b =8 (mod9)
a=2(mod9) | —2g3(ro) | —A5e3(r) | —Fad(ro)
a=5(mod9) | —gd(rg) | —Le3(r) | ——=0d(r0)
a=8(mod9) | ——=gd(ro) | —Lad(r) | —2&03(ro)
c) If b+ ¢ = 0(mod 3), then \/——3 a3(0)1%=2 is given by the fol-

lowing table:

b=2(mod9) | b=5(mod9) | b =8 (mod9)
a=1(mod9) | —gi(rg) | “ai(rg) | ai(ro)
a=4(mod9) | Hgi(rg) | Feilre) | F5ei(ro)
a=T(mod9) | Hhad(ro) | “moi(re) | “ai(re)

b=1(mod9) | b=4(mod9) | b=7(mod9)
a=2(mod9) | —Hgi(rg) | —%e3(r) | ——=0i(r0)
0= 5(mod9) mgm) ﬁ,gl(m) g} (r0)
a=8(mod9) | ——ad(ro) | —he(ro) | —ad(ro)

(3) The cases 3|a and 3|c.
a) If a —c=—3(mod9), then

V=3
b) Ifa—c=

V=3

]' a,—0,c
—— a0 Mz{

0 (mod9),

1 a,—0,Cc
——=g3 ()" = { u

ugs

then

|—Il\3
R

\/*91

o1 (

Q
g5 (7

PQ?(TQ)
1(mQ)

)

Q)

if b=1 (mod 3);
if b= 2 (mod 3);

if b=1 (mod 3);
if b=2 (mod 3);
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¢) If a — ¢ = 3 (mod9), then

u 2 : — .

1 52(6)lo-be] = \/—_—ggl(TQ) ifb=1 (mod 3);

V=32 —5%9%(7@) if b=2 (mod 3);
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