GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT

$$D \equiv -3 \pmod{36}$$

Daeyeol Jeon*

ABSTRACT. A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function \mathfrak{g}_2 over quadratic number fields with discriminant $D \equiv -3 \pmod{36}$.

1. Introduction

Let K be an imaginary quadratic number field with the discriminant D with ring of integer $\mathcal{O} = \mathbb{Z}[\theta]$ where

(1.1)
$$\theta := \begin{cases} \frac{\sqrt{D}}{2}, & \text{if } D \equiv 0 \pmod{4}; \\ \frac{-1+\sqrt{D}}{2}, & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

Then the theory of complex multiplication states that the modular invariant $j(\mathcal{O}) = j(\theta)$ generates the ring class field $H_{\mathcal{O}}$ over K with degree $[H_{\mathcal{O}}:K] = h(\mathcal{O})$, the class number of \mathcal{O} , and the conjugates of $j(\theta)$ under the action of $Gal(H_{\mathcal{O}}/K)$ are singular moduli $j(\tau)$, where $\tau := \tau_Q$ is the Heegner point determined by $Q(\tau_Q, 1) = 0$ for a positive definite integral primitive binary quadratic forms

$$Q(x,y) = [a,b,c] = ax^2 + bxy + cy^2$$

with discriminant $D = b^2 - 4ac$.

Received October 20, 2010; Accepted November 24, 2010.

 $^{2010 \ {\}it Mathematics Subject Classification: Primary 11F37; Secondary 11F30.}$

Key words and phrases: class invariants, Galois actions, Weber functions.

This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MEST)(No. 2010-0000607).

In his Lehrbuch der Algebra [8], H. Weber calls the value of a modular function $f(\theta)$ a class invariant if we have

$$K(f(\theta)) = K(j(\theta)).$$

Despite a long history of the problem, one began to treat class invariants in a systemic and algorithmic way only after Shimura Reciprocity Law [6] became available. The reciprocity law provides not only a method of systematically determining whether $f(\theta)$ is a class invariant but also a description of the Galois conjugates of $f(\theta)$ under $Gal(H_{\mathcal{O}}/K)$. This tool is well illustrated in several works by Reinier M. Bröker, Alice Gee, and Peter Stevenhagen in [1, 3, 4, 5, 7]. Bröker's Ph. D thesis [1] discusses p-adic theory of class invariants as well.

Gee determined the class invariants from a generalized Weber function \mathfrak{g}_2 by using the Shimura Reciprocity Law as follows:

Theorem 1.1. [4, p.73, Theorem 1] Let K be an imaginary quadratic number field of discriminant $D \equiv -3 \pmod{36}$ with the ring of integer $\mathcal{O} = \mathbb{Z}[\theta]$. Suppose $\theta = \frac{-B + \sqrt{D}}{2}$ as defined in (1.1). Then $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)$ gives an integral generator for $H_{\mathcal{O}}$ over K.

In this paper, we compute the Galois actions of the class invariant $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)$ under $Gal(H_{\mathcal{O}}/K)$.

2. Preliminary

Let \mathcal{Q}_D^0 be the set of primitive quadratic forms and $C(D) = \mathcal{Q}_D^0/\Gamma(1)$ denote the form class group of discriminant D. Since $Gal(H_{\mathcal{O}}/K)$ is isomorphic to C(D), it suffices to compute the action of a primitive quadratic form Q = [a, b, c] on the class invariant $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)$.

THEOREM 2.1. [2, 3] Let $\mathbb{Z}[\theta]$ be the ring of integers of an imaginary quadratic number field K of discriminant D and let Q = [a,b,c] be a primitive quadratic form of discriminant D. Let $\theta = \frac{-B+\sqrt{D}}{2}$ as defined in (1.1) and $\tau_Q = \frac{-b+\sqrt{-D}}{2a}$. Let $M = M_{[a,b,c]} \in \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ be given as follows: For $D \equiv 0 \pmod{4}$,

$$(2.1) \qquad M \equiv \left\{ \begin{array}{ll} \binom{a & \frac{b}{2}}{0 & 1} & \pmod{p^{r_p}} & \text{if } p \nmid a; \\ \binom{-\frac{b}{2} & -c}{1 & 0} & \pmod{p^{r_p}} & \text{if } p \mid a \text{ and } p \nmid c; \\ \binom{-\frac{b}{2} - a & -\frac{b}{2} - c}{1 & -1} & \pmod{p^{r_p}} & \text{if } p \mid a \text{ and } p \mid c, \end{array} \right.$$

and for $D \equiv 1 \pmod{4}$,

$$(2.2) \quad M \equiv \left\{ \begin{array}{ll} \binom{a & \frac{b-1}{2}}{0 & 1} & \pmod{p^{r_p}} & \text{if } p \nmid a; \\ \binom{-b-1}{2} & -c \\ 1 & 0 \end{pmatrix} & \pmod{p^{r_p}} & \text{if } p \mid a \text{ and } p \nmid c; \\ \binom{-b-1}{2} - a & -\frac{1-b}{2} - c \\ 1 & -1 \end{pmatrix} & \pmod{p^{r_p}} & \text{if } p \mid a \text{ and } p \mid c. \end{array} \right.$$

where p runs over all prime factors of N and $p^{r_p}||N$. Then the Galois action of the class of [a, -b, c] in C(D) with respect to the Artin map is given by

$$f(\theta)^{[a,-b,c]} = f^M(\tau_Q)$$

for any modular function f of level N such that $f(\theta) \in H_{\mathcal{O}}$. Here f^M denote the image of f under the action of M.

The action of M depends only on M_m for all primes p|N where $M_m \in \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$ is the reduction modulo m of M. Every M_m with determinant x decomposes as $M_m = \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$. Since $\operatorname{SL}_2(\mathbb{Z}/m\mathbb{Z})$ is generated by $S_m \equiv \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T_m \equiv \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, it suffices to find the action of $\begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}_{p^{r_p}}$, $S_{p^{r_p}}$ and $T_{p^{r_p}}$ on f for all p|N. Denote ζ_n by a primitive nth root of unity. For $\begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}_{p^{r_p}}$, the action on f is given by lifting the automorphism of $\mathbb{Q}(\zeta_N)$ determined by

$$\zeta_{p^{r_p}} \mapsto \zeta_{p^{r_p}}^x$$
 and $\zeta_{q^{r_q}} \mapsto \zeta_{q^{r_q}}$

for all prime factors q|N with $q \neq p$. In order that the actions of the matrices at different primes commute with each other, we lift $S_{p^{r_p}}$ and $T_{p^{r_p}}$ to matrices in $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$ such that they reduce to the identity matrix in $\mathrm{SL}_2(\mathbb{Z}/q^{r_q}\mathbb{Z})$ for all $q \neq p$.

The Dedekind-eta function

$$\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \text{ with } q = e^{2\pi i z}$$

is holomorphic and non-zero for z in the complex upper half plane \mathbb{H} and $\Delta(z) = \eta^{24}(z)$ is modular form of weight 12 with no poles or zeros on \mathbb{H} . Then we have generalized Weber functions as follows:

(2.3)
$$\mathfrak{g}_0(z) = \frac{\eta(\frac{z}{3})}{\eta(z)}, \ \mathfrak{g}_1(z) = \zeta_{24}^{-1} \frac{\eta(\frac{z+1}{3})}{\eta(z)}, \ \mathfrak{g}_2(z) = \frac{\eta(\frac{z+2}{3})}{\eta(z)}, \ \mathfrak{g}_3(z) = \sqrt{3} \frac{\eta(3z)}{\eta(z)}.$$

Note that the functions in (2.3) are modular of level 72. For the generating matrices $S, T \in SL_2(\mathbb{Z})$ given by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, the transformation rules $\eta \circ S(z) = \sqrt{-iz}\eta(z)$ and $\eta \circ T(z) = \zeta_{24}\eta(z)$ hold. Hence

(2.4)
$$(\mathfrak{g}_0, \mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{g}_3) \circ S = (\mathfrak{g}_3, \zeta_{24}^{-2} \mathfrak{g}_2, \zeta_{24}^2 \mathfrak{g}_1, \mathfrak{g}_0),$$

$$(\mathfrak{g}_0, \mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{g}_3) \circ T = (\mathfrak{g}_1, \zeta_{24}^{-2} \mathfrak{g}_2, \mathfrak{g}_0, \zeta_{24}^2 \mathfrak{g}_3).$$

3. Results

In this section, we compute the action of a primitive quadratic form Q = [a, b, c] on the class invariant $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)$. For that we need to find the action of $M_m \in GL_2(\mathbb{Z}/m\mathbb{Z})$ with m = 8, 9. Combining Lemma 6 of [3] and the transformation rule (2.4), we obtain the following:

LEMMA 3.1. The actions of $\begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}_m$, S_m and T_m (m = 8, 9) on \mathfrak{g}_i^2 (i = 0, 1, 2, 3) are given by

Using this, together with Theorem 2.1, we have the following theorems.

Theorem 3.2. Let $D \equiv -3 \pmod{36}$ be a discriminant of an order $\mathcal{O} = [\theta,1]$ in an imaginary quadratic field. Let $\theta = \frac{-1+\sqrt{D}}{2}$, $\tau_Q = \frac{-b+\sqrt{D}}{2a}$ and $u = (-1)^{\frac{b+1}{2}+ac+a+c}$. If [a,b,c] be a reduced primitive quadratic form of discriminant D, then the actions of [a,-b,c] on $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)$ are as follows:

- (1) The case $3 \nmid a$.
 - a) If $b \equiv 0 \pmod{3}$, then $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following table:

	$b \equiv 0 \pmod{9}$	$b \equiv 3 \pmod{9}$	$b \equiv 6 \pmod{9}$
$a \equiv 1 (\text{mod} 9)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$
$a \equiv 2 (\text{mod} 9)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$
$a \equiv 4 (\text{mod} 9)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$
$a \equiv 5 (\bmod 9)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(au_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(au_Q)$
$a \equiv 7 (\bmod 9)$	$\frac{-u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$
$a \equiv 8 (\bmod 9)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_0^2(\tau_Q)$

b) If $a + b \equiv 0 \pmod{3}$, then $\frac{1}{\sqrt{-3}} \mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following table:

	$b \equiv 2 \pmod{9}$	$b \equiv 5 \pmod{9}$	$b \equiv 8 \pmod{9}$
$a \equiv 1 \pmod{9}$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(au_Q)$
$a \equiv 4 (\bmod 9)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 7 \pmod{9}$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$

	$b \equiv 1 \pmod{9}$	$b \equiv 4 \pmod{9}$	$b \equiv 7 \pmod{9}$
$a \equiv 2 (\text{mod} 9)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 5 (\text{mod} 9)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 8 (\text{mod} 9)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$

c) If $b \not\equiv 0 \pmod{3}$ and $a+b \equiv \pm 1 \pmod{3}$, then $\frac{1}{\sqrt{-3}} \mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following table:

	$b \equiv 1 \pmod{9}$	$b \equiv 4 \pmod{9}$	$b \equiv 7 \pmod{9}$
$a \equiv 1 \pmod{9}$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$
$a \equiv 4 (\bmod 9)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 7 (\bmod 9)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$

	$b \equiv 2 \pmod{9}$	$b \equiv 5 \pmod{9}$	$b \equiv 8 \pmod{9}$
$a \equiv 2 \pmod{9}$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 5 \pmod{9}$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 8 \pmod{9}$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$

(2) The cases 3|a and $3 \nmid c$. a) If $b \equiv 0 \pmod{3}$, then $\frac{1}{\sqrt{-3}} \mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following

	$b \equiv 0 \pmod{9}$	$b \equiv 3 \pmod{9}$	$b \equiv 6 \pmod{9}$
$c \equiv 1 (\bmod 9)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$-rac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$
$c \equiv 2 (\bmod 9)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$
$c \equiv 4 (\bmod 9)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$rac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$
$c \equiv 5 (\bmod 9)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$
$c \equiv 7 (\bmod 9)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(au_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$
$c \equiv 8 \pmod{9}$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_3^2(\tau_Q)$

b) If $b \not\equiv 0 \pmod{3}$ and $b+c \equiv \pm 1 \pmod{3}$, then $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following table:

	$b \equiv 1 \pmod{9}$	$b \equiv 4 \pmod{9}$	$b \equiv 7 \pmod{9}$
$a \equiv 1 \pmod{9}$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 4 \pmod{9}$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(au_Q)$

$$a \equiv 7 \pmod{9} \quad \frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q) \quad \frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q) \quad \frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$$

	$b \equiv 2 \pmod{9}$	$b \equiv 5 \pmod{9}$	$b \equiv 8 \pmod{9}$
$a \equiv 2 (\text{mod} 9)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 5 \pmod{9}$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$
$a \equiv 8 (\text{mod} 9)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_2^2(\tau_Q)$

c) If $b+c\equiv 0\ (\mathrm{mod}\ 3)$, then $\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)^{[a,-b,c]}$ is given by the following table:

	$b \equiv 2 \pmod{9}$	$b \equiv 5 \pmod{9}$	$b \equiv 8 \pmod{9}$
$a \equiv 1 \pmod{9}$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(au_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 4 (\bmod 9)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 7 (\text{mod} 9)$	$\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(au_Q)$

	$b \equiv 1 \pmod{9}$	$b \equiv 4 \pmod{9}$	$b \equiv 7 \pmod{9}$
$a \equiv 2 (\bmod 9)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 5 \pmod{9}$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$
$a \equiv 8 \pmod{9}$	$-\frac{u}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3^2}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$	$-\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q)$

(3) The cases 3|a and 3|c.

a) If
$$a - c \equiv -3 \pmod{9}$$
, then

$$\frac{1}{\sqrt{-3}}\mathfrak{g}_2^2(\theta)^{[a,-b,c]} = \begin{cases} \frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q) & \text{if } b \equiv 1 \pmod{3}; \\ -\frac{u\zeta_3}{\sqrt{-3}}\mathfrak{g}_1^2(\tau_Q) & \text{if } b \equiv 2 \pmod{3}; \end{cases}$$

b) If $a - c \equiv 0 \pmod{9}$, then

$$\frac{1}{\sqrt{-3}}\mathfrak{g}_{2}^{2}(\theta)^{[a,-b,c]} = \begin{cases} \frac{u\zeta_{3}^{2}}{\sqrt{-3}}\mathfrak{g}_{1}^{2}(\tau_{Q}) & \text{if } b \equiv 1 \pmod{3}; \\ -\frac{u}{\sqrt{-3}}\mathfrak{g}_{1}^{2}(\tau_{Q}) & \text{if } b \equiv 2 \pmod{3}; \end{cases}$$

c) If $a - c \equiv 3 \pmod{9}$, then

$$\frac{1}{\sqrt{-3}}\mathfrak{g}_{2}^{2}(\theta)^{[a,-b,c]} = \begin{cases} \frac{u}{\sqrt{-3}}\mathfrak{g}_{1}^{2}(\tau_{Q}) & \text{if } b \equiv 1 \pmod{3}; \\ -\frac{u\zeta_{3}^{2}}{\sqrt{-3}}\mathfrak{g}_{1}^{2}(\tau_{Q}) & \text{if } b \equiv 2 \pmod{3}; \end{cases}$$

Acknowledgments

We thank S.-Y. Kang and C.H. Kim for their kind and valuable suggestions in proving the results of this paper.

References

- R. M. Bröker, Constructing elliptic curves of prescribed order, Ph. D. Thesis, Universiteit Leiden, 2006.
- [2] H. H. Chan, Gee, A., and V. Tan, Cubic singular moduli, Ramanujan's class invariants λ_n and the explicit Shimura reciprocity law, Pacific J. Math. 208 (2003) 23–37.
- [3] A. Gee, Class invariants by Shimura's reciprocity law, J. Théor. Nombre Bordeaux 11 (1999) 45–72.
- [4] A. Gee, Class fields by Shimura reciprocity, Ph. D. Thesis, Universiteit van Amsterdam, 2001.
- [5] A. Gee and P. Stevenhagen, , Generating class fields using Shimura reciprocity, Proceedings of the Third International Symposium on Algorithmic Number Theory (Lecture Notes in Computer Sciences 1423, 441-453, Springer-Verlag, 1998).
- [6] G. Shimura, Introduction to the arithmetic theory of automorphic forms, Princeton University Press, 1971.
- [7] P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory-its centenary and prospect, ed. K. Miyake, Adv. Studies in pure math., 30 (2001), 161-176.
- [8] H. Weber, Lehrbuch der Algebra, dritter Band, Friedrich Vieweg und Sohn, 1908.

*

Department of Mathematics Education Kongju National University Kongju 314-701, Republic of Korea *E-mail*: dyjeon@kongju.ac.kr