JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 4, December 2010

HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS

JAEHYUN AHN* AND HWANYUP JUNG**

ABSTRACT. In this paper, we prove that the Hilbert 2-class field tower of an imaginary quadratic function field $F = k(\sqrt{D})$ is infinite if $r_2(\mathcal{C}(F)) = 4$ and exactly one monic irreducible divisor of D is of odd degree, except for one type of Rédei matrix of F. We also compute the density of such imaginary quadratic function fields F.

1. Introduction and statement of results

Let $\mathbf{k} = \mathbb{F}_q(T)$ be the rational function field over the finite field \mathbb{F}_q and $\mathbb{A} = \mathbb{F}_q[T]$. Write ∞ for the prime of \mathbf{k} associated to (1/T), which is called the infinite prime of \mathbf{k} . For a finite separable extension F of \mathbf{k} , let \mathcal{O}_F be the integral closure of \mathbb{A} in F and H_F be the Hilbert class field of F with respect to $\mathcal{O}_F([6])$. Let ℓ be a prime number. Write $F_1^{(\ell)}$ for the Hilbert ℓ -class field of $F_0^{(\ell)} = F$ (i.e., $F_1^{(\ell)}$ is the maximal ℓ -extension of F inside H_F) and inductively, $F_{n+1}^{(\ell)}$ for the Hilbert ℓ -class field of $F_n^{(\ell)}$ for $n \geq 1$. Then we obtain a sequence of fields

$$F_0^{(\ell)} = F \subset F_1^{(\ell)} \subset \cdots \subset F_n^{(\ell)} \subset \cdots,$$

which is called the Hilbert ℓ -class field tower of F. We say that the Hilbert ℓ -class field tower of F is infinite if $F_n^{(\ell)} \neq F_{n+1}^{(\ell)}$ for each $n \geq 0$. For any multiplicative abelian group A, write $r_\ell(A) = \dim_{\mathbb{F}_\ell}(A/A^\ell)$, which is called the the ℓ -rank of A. By Schoof's theorem ([7]), we know that Hilbert ℓ -class field tower of F is infinite if $r_\ell(\mathcal{C}(F))$ is greater than or equal to $2 + 2\sqrt{r_\ell(\mathcal{O}_F^*) + 1}$, where $\mathcal{C}(F)$ and \mathcal{O}_F^* are the ideal class group and the group of units of \mathcal{O}_F , respectively.

Received July 16, 2010; Accepted November 09, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R18.

Key words and phrases: Hilbert 2-class field tower, quadratic function field.

Correspondence should be addressed to Hwanyup Jung, hyjung@chungbuk.ac.kr. This work was supported by the research grant of the Chungbuk National University in 2010.

Jaehyun Ahn and Hwanyup Jung

In classical case, it has been conjectured by Martinet [5] that the Hilbert 2-class field tower of imaginary quadratic field F is infinite if $r_2(\mathcal{C}(F)) = 4$, and this conjecture has been studied by many authors ([2, 3, 8]).

Assume that q is odd. By an imaginary quadratic function field, we mean a quadratic extension F of k in which ∞ ramifies. Let \mathcal{P} be the set of all monic irreducible polynomials in A. Let γ be a generator of \mathbb{F}_q^* . Then any imaginary quadratic function field F of k can be written uniquely as $F = k(\sqrt{D})$ with $D = aP_1 \cdots P_t$, where $a \in \{1, \gamma\}$, $P_i \in \mathcal{P}$ for $1 \leq i \leq t$ and deg D is odd. By genus theory, $r_2(\mathcal{C}(F)) = t - 1$. Since $\mathcal{O}_F^* \cong \mathbb{F}_q^*$, $r_2(\mathcal{O}_F^*) = 1$, so the Hilbert 2-class field tower of F is infinite if $r_2(\mathcal{C}(F)) \geq 5$ (i.e. $t \geq 6$) by Schoof's theorem. Write $r_4(\mathcal{C}(F)) = r_2(\mathcal{C}(F)^2)$, which is called the 4-rank of $\mathcal{C}(F)$. In [1], it has been shown that the Hilbert 2-class field tower of F is infinite if $r_4(\mathcal{C}(F)) \geq 3$, except some cases. Let M_F be the Rédei matrix associated to F (cf. §2.1). In this paper, we study the case where $r_2(\mathcal{C}(F)) = 4$ and exactly one monic irreducible polynomial of odd degree divides D, and prove that the Hilbert 2-class field tower of such a F is infinite, except for one type of Rédei matrix of F.

THEOREM 1.1. Let $F = k(\sqrt{D})$ be an imaginary quadratic function field over k. Suppose that $r_2(\mathcal{C}(F)) = 4$ and exactly one monic irreducible divisor of D has odd degree, say $D = aP_1 \cdots P_5$ with $a \in \{1, \gamma\}$ and deg P_1 is odd. Then the Hilbert 2-class field tower of F is infinite, except the case where

$$M_F = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix},$$

by changing the order of P_i 's $(2 \le i \le 5)$. In the exceptional case, $r_4(\mathcal{C}(F)) = 0$.

Now we compute the density of imaginary quadratic function fields $F = k(\sqrt{D})$ satisfying Theorem 1.1 in all such ones. Write **A** for the set of all imaginary quadratic function fields $F = k(\sqrt{D})$ with $r_2(\mathcal{C}(F)) = 4$ and exactly one monic irreducible divisor of D has odd degree. For any positive odd integer n, write \mathbf{A}_n for the set of $F = k(\sqrt{D}) \in \mathbf{A}$ with deg D = n and \mathbf{A}_n^* for the subset of \mathbf{A}_n consisting of $F = k(\sqrt{D}) \in \mathbf{A}_n$ satisfying Theorem 1.1. Also we define a density

$$\delta = \lim_{\substack{n \to \infty \\ n: \text{odd}}} \frac{|\mathbf{A}_n^*|}{|\mathbf{A}_n|}.$$

700

Then we have the following:

Theorem 1.2. $\delta = 1 - 2^{-10} > 0.9990234.$

Theorem 1.2 says that most of imaginary quadratic function fields $F = k(\sqrt{D})$ with $r_2(\mathcal{C}(F)) = 4$ and exactly one monic irreducible divisor of D has odd degree have infinite Hilbert 2-class field towers.

2. Preliminaries

2.1. 4-rank of C(F) and Rédei matrix M_F

Let $F = k(\sqrt{D})$ be an imaginary quadratic function field with $D = aP_1 \cdots P_t$, where $a \in \{1, \gamma\}$, $P_i \in \mathcal{P}$ for $1 \leq i \leq t$ and deg D is odd. For simplicity, we assume that deg P_1 is odd and deg P_i is even for $2 \leq i \leq t$. Let $M_F = (e_{ij})$ be the $t \times t$ matrix over \mathbb{F}_2 defined as follows: for $1 \leq i \neq j \leq t$, let $e_{ij} \in \mathbb{F}_2$ be defined by $(-1)^{e_{ij}} = (\frac{P_i}{P_j})$, and e_{ii} is defined to satisfy $\sum_{i=1}^t e_{ij} = 0$. This matrix M_F is called the Rédei matrix associated to F. Then 4-rank $r_4(\mathcal{C}(F))$ of $\mathcal{C}(F)$ satisfies the following equality ([9, §3]);

(2.1)
$$r_4(\mathcal{C}(F)) = t - 1 - \operatorname{rank}(M_F).$$

2.2. Martinet's inequality

For a finite extension K of k, write $S_{\infty}(K)$ for the set of primes of K lying over ∞ . The following proposition is a special case of Theorem 2.1 in [1].

PROPOSITION 2.1. Let E and K be finite (geometric) separable extensions of k such that E/K is a quadratic extension. Let $\gamma_{E/K}$ be the number of prime ideals of \mathcal{O}_K that ramify in E and $\rho_{E/K}$ be the number of places \mathfrak{p}_{∞} in $S_{\infty}(K)$ that ramify or inert in E. Then the Hilbert 2-class field tower of E is infinite if

(2.2)
$$\gamma_{E/K} \ge |S_{\infty}(K)| - \rho_{E/K} + 3 + 2\sqrt{2}|S_{\infty}(K)| - \rho_{E/K} + 1.$$

The inequality (2.2) in Proposition 2.1 is called Martinet's inequality. Let F be an imaginary quadratic function field over k. We remark that if there exists an extension E of F which has infinite Hilbert 2-class field tower and $F \subset E \subset F_1^{(2)}$, then F also has infinite Hilbert 2-class field tower. Applying the Martinet's inequality with above remark, we can prove the following corollary (see [1, §2] for details). COROLLARY 2.2. Let $F = k(\sqrt{D})$ be an imaginary quadratic function field of k. If D has two distinct nonconstant monic divisors D' and D" of even degrees satisfying $(\frac{D'}{Q_j}) = (\frac{D''}{Q_j}) = 1$ for monic irreducible divisors Q_j (j = 1, 2) of D, then F has infinite Hilbert 2-class field tower.

3. Proof of Theorems

3.1. Proof of Theorem 1.1

Let $F = k(\sqrt{D})$ be an imaginary quadratic function field over k with $D = aP_1P_2P_3P_4P_5$, where $a \in \{1, \gamma\}$, $P_i \in \mathcal{P}$ for $1 \le i \le 5$ and deg D is odd. We also assume that deg P_1 is odd and deg P_i is even for $2 \le i \le 5$. Then, by quadratic reciprocity law, the Rédei matrix M_F is symmetric.

First, suppose that there exists a column vector $\mathbf{m}_j = (e_{ij})$ of M_F for which at least two of e_{ij} 's $(2 \leq i \leq 5, i \neq j)$ are 0. Assuming that $e_{ij} = e_{kj} = 0$ with $i \neq j$ and $k \neq j$, put $K = k(\sqrt{P_i}, \sqrt{P_k})$, which is a real biquadratic extension of k. Since $(\frac{P_i}{P_j}) = (\frac{P_k}{P_i}) = 1$, P_j splits completely in K. For any $l \neq i, j, k$, at least one of $(\frac{P_i}{P_l}), (\frac{P_k}{P_l})$ and $(\frac{P_i P_k}{P_l})$ is 1, so P_l splits into at least 2 primes in K. Applying Proposition 2.1 on E/K, where $E = F(\sqrt{P_i}, \sqrt{P_k})$, we see that the Hilbert 2-class field tower of E is infinite. Since E is contained in $F_1^{(2)}$, the Hilbert 2-class field tower of F is also infinite. In the following, we assume that at most one of e_{ij} 's $(2 \leq i \leq 5, i \neq j)$ is 0 for each column $\mathbf{m}_j = (e_{ij})$ for $1 \leq j \leq 5$ of M_F .

CASE (I) Assume that one of e_{1i} 's $(2 \le i \le 5)$ is 0, say $e_{21} = 0$ and $e_{i1} = 1$ for $3 \le i \le 5$. If $e_{i2} = 1$ for $3 \le i \le 5$, put $K = k(\sqrt{P_3P_4}, \sqrt{P_3P_5})$, so that P_1 splits completely in K. Since at least one of $(\frac{P_3P_4}{P_2}), (\frac{P_3P_5}{P_2})$ and $(\frac{P_4P_5}{P_2})$ is 1, P_2 splits into at least 2 primes in K. Applying Proposition 2.1, we see that the Hilbert 2-class field tower of Fis infinite. On the other hand, if one of e_{i2} 's $(3 \le i \le 5)$ is 0, then we may assume that $e_{32} = 0$ and $e_{i2} = 1$ for i = 4, 5. Then $(\frac{P_2}{P_j}) = (\frac{P_4P_5}{P_j}) = 1$ for j = 1, 3, so the Hilbert 2-class field tower of F is infinite by Corollary 2.2.

CASE (II) Assume $e_{1i} = 1$ for $2 \le i \le 5$. If there is a column $\mathbf{m}_j = (e_{ij}) (2 \le j \le 5)$ of M_F satisfying $e_{ij} = 1$ for all $i (2 \le i \le 5, i \ne j)$, then $(\frac{P_k P_l}{P_1}) = (\frac{P_k P_m}{P_1}) = (\frac{P_k P_m}{P_j}) = 1$ for $\{j, k, l, m\} = \{2, 3, 4, 5\}$, so the Hilbert 2-class field tower of F is infinite by Corollary 2.2. However, if there is no such column, we can't find an appropriate nonconstant monic divisors of D which satisfy the condition of Corollary 2.2. In this

702

case, we have $e_{23} = e_{32} = e_{45} = e_{54} = 0$, by changing the order of P_i 's. So, R_F is as described in the assertion of Theorem 1.1. This completes the proof of the Theorem 1.1.

3.2. Proof of Theorem 1.2

For any integers $n, t \geq 1$, write $\mathcal{P}(n)$ for the set of all monic irreducible polynomials of degree $n, \mathcal{P}(n, t)$ for the subset of $\mathcal{P}(n)$ consisting of monic square-free polynomials of degree n with t irreducible factors and $\mathcal{P}'(n,t)$ for the subset of $\mathcal{P}(n,t)$ consisting of $N = P_1 \cdots P_t$ with $\deg(P_i) \neq \deg(P_j)$ for $1 \leq i \neq j \leq t$. Then, as $n \to \infty$, we have

(3.1)
$$|\mathcal{P}(n)| = \frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right),$$

(3.2)
$$|\mathcal{P}(n,t)| = \frac{q^n (\log n)^{t-1}}{(t-1)!n} + O\Big(\frac{q^n (\log n)^{t-2}}{n}\Big).$$

Let $\bar{\mathbf{A}}_n$ be the subset of \mathbf{A}_n consisting of $F = k(\sqrt{D}) \in \mathbf{A}_n$ with $D \in \mathcal{P}'(n,5)$, $\bar{\mathbf{A}}_n^* = \mathbf{A}_n^* \cap \bar{\mathbf{A}}_n$ and $\bar{\mathbf{B}}_n^* = \bar{\mathbf{A}}_n \setminus \bar{\mathbf{A}}_n^*$. By Proposition 2.2 in [10], we have

$$|\mathcal{P}(n,t) \setminus \mathcal{P}'(n,t)| = o(\frac{q^n (\log n)^{t-1}}{n}),$$

 \mathbf{SO}

(3.3)
$$\delta = \lim_{\substack{n \to \infty \\ n: \text{odd}}} \frac{2|\bar{\mathbf{A}}_n^*|}{2|\bar{\mathbf{A}}_n|} = \lim_{\substack{n \to \infty \\ n: \text{odd}}} \frac{|\bar{\mathbf{A}}_n^*|}{|\bar{\mathbf{A}}_n|}.$$

We will compute the density $\lim_{\substack{n\to\infty\\n:\text{odd}}} \frac{|\bar{\mathbf{B}}_n^*|}{|\bar{\mathbf{A}}_n|}$. Using (3.1) with Lemma 3.5 in [10], we get

$$\begin{aligned} |\bar{\mathbf{A}}_{n}| &= \sum_{\substack{0 < n_{1} < \dots < n_{5} \\ n_{1} \equiv 1(2), n_{2} \equiv \dots \equiv n_{5} \equiv 0(2) \\ n_{1} + \dots + n_{5} = n}} \sum_{P_{1} \in \mathcal{P}(n_{1})} \sum_{P_{2} \in \mathcal{P}(n_{2})} \cdots \sum_{P_{5} \in \mathcal{P}(n_{5})} 1 \\ \end{aligned}$$

$$(3.4) \qquad = 2^{-4} \cdot \frac{q^{n} (\log n)^{4}}{4! n} + O\left(\frac{q^{n} (\log n)^{3}}{n}\right).$$

We can compute the asymptotic formula of $|\mathbf{\bar{B}}_{n}^{*}|$ by using Proposition 2.3 in [4] as follows:

$$\begin{aligned} |\bar{\mathbf{B}}_{n}^{*}| &= \sum_{\substack{0 < n_{1} < \cdots < n_{5} \\ n_{1} \equiv 1(2), n_{2} \equiv \cdots \equiv n_{5} \equiv 0(2) \\ n_{1} + \cdots + n_{5} = n}} \sum_{\substack{P_{1} \in \mathcal{P}(n_{1}) \\ P_{2} \in \mathcal{P}(n_{2}) \\ (\frac{P_{1}}{P_{2}}) = -1 \\ (\frac{P_{1}}{P_{2}}) = -1 \\ (\frac{P_{1}}{P_{5}}) = 1 \end{aligned}$$

$$(3.5) &= 2^{-14} \cdot \frac{q^{n} (\log n)^{4}}{4!n} + O\left(\frac{q^{n} (\log n)^{3}}{n}\right). \end{aligned}$$

From (3.4) and (3.5), we get $\lim_{\substack{n \to \infty \\ n: \text{odd}}} \frac{|\mathbf{\tilde{B}}_n^*|}{|\mathbf{A}_n|} = 2^{-10}$, so $\delta = 1 - 2^{-10}$. This completes the proof of Theorem 1.2.

References

- [1] S. Bae and H. Jung, On Hilbert 2-class field towers of quadratic function fields, preprint.
- [2] E. Benjamin, On imaginary quadratic number fields with 2-class group of rank 4 and infinite 2-class field tower, Pacific J. Math. 201 (2001), no. 2, 257–266.
- [3] _____, On a question of Martinet concerning the 2-class field tower of imaginary quadratic number field, Ann. Sci. Math. Quebec 26 (2002), no. 1, 1–13.
- [4] H. Jung, *Density of class groups of imaginary l-cyclic function fields*, submitted for publication.
- [5] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), no. 1, 65–73.
- [6] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365–378.
- [7] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), no. 1, 6–14.
- [8] Y. Sueyoshi, Infinite 2-class field towers of some imaginary quadratic number fields, Acta. Arith. 113 (2004), 251-257.
- [9] C. Wittmann, *l*-Class groups of cyclic function fields of degree *l*, Finite fields and their applications 13 (2007), 327-347.
- [10] _____, Densities for 4-ranks of quadratic function fields, J. Number Theory 129 (2009), 2635-2645.

*

Department of Mathematics Chungnam National University Daejon 305-764, Republic of Korea *E-mail*: jhahn@cnu.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr