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NEW EXISTENCE OF SOCIAL EQUILIBRIA IN
GENERALIZED NASH GAMES WITH INSATIABILITY

Won Kyu Kim*

Abstract. In this paper, we first introduce a new model of strate-
gic Nash game with insatiability, and next give two social equi-
librium existence theorems for general strategic games which are
comparable with the previous results due to Arrow and Debreu,
Debreu, and Chang in several aspects.

1. Introduction

The classical results of Arrow and Debreu [1], Debreu [4], and Nash
[8] have served as basic references for the existence of Nash equilibrium
for non-cooperative strategic games. In all of them, convexity of strat-
egy spaces, continuity and concavity of the payoff functions and the
constraint correspondences were assumed. On the other hand, Shafer
and Sonnenschein [10] extended the Debreu theorem on the existence of
equilibrium in a generalized Nash game. Indeed, they maintained the
sprits of the pioneering works of Arrow and Debreu [1] and Debreu [4].
Next, in 1976, Borglin and Keiding [2] first introduced the majorized
concept of correspondences to obtain the existence of equilibrium in an
abstract economy. Till now, there have been a number of generaliza-
tions, and also many applications of those theorems have been found in
several areas, e.g., see [3,5,7,9] and references therein.

In this paper, we first introduce a new model of strategic Nash game
with insatiability, and next give two new social equilibrium existence
theorems for general strategic games by using Chang’s maximal element
existence theorem in [3], which are comparable with the previous results
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due to Arrow and Debreu [1], Chang [3], Debreu [4], and others in several
aspects. Those results further generalize Nash’s equilibrium existence
theorem for a compact strategic game into a Hausdorff topological vector
space with infinite players.

2. Preliminaries

If A is a set, we shall denote by 2A the family of all subsets of A. If A
is a subset of a vector space, we shall denote by coA the convex hull of
A. Let E be a topological vector space and A,X be nonempty subsets
of E. If S, T : A → 2E are correspondences (or multimaps), then co T :
A → 2E and S∩T : A → 2X are correspondences defined by (co T )(x) =
co T (x), (S ∩ T )(x) = S(x) ∩ T (x) for each x ∈ A, respectively.

Let X be a nonempty subset of a topological vector space. A cor-
respondence φ : X → 2X is said to be of class L [5] if (i) for each
x ∈ X, x /∈ co φ(x), (ii) for each y ∈ X, φ−1(y) = {x ∈ X : y ∈ φ(x)}
is open in X. Let φ : X → 2X be a given correspondence and x ∈ X ;
then a correspondence φx : X → 2X is said to be an L-majorant of φ
at x [5] if φx is of classL and there exists an open neighborhood Nx of
x in X such that for each z ∈ Nx, φ(z) ⊂ φx(z). The correspondence φ
is said to be L-majorized if for each x ∈ X with φ(x) 6= ∅, there exists
an L-majorant of φ at x.

Let X be a nonempty subset of a topological vector space. A cor-
respondence φ : X → 2X is said to have a maximal element x̄ ∈ X if
φ(x̄) = ∅. The existence of maximal element is essential in proving exis-
tence of equilibria in generalized games, and there have been numerous
existence theorems on maximal elements in general settings by several
authors, e.g., see [2,3,5,7,9].

In a recent paper [3], Chang proved a general maximal element exis-
tence theorem for Ls-majorized correspondences without assuming the
local convexity of the given set Xi nor the openness assumption of the
set {x ∈ X | Pi(x) 6= ∅}. The following lemma is a special form of
Theorem 2 in [3] by letting K = D = Πi∈IXi:

Lemma 2.1. Let Γ = (Xi, Pi)i∈I be a qualitative game such that for
each i ∈ I,

(1) Xi is a nonempty compact convex subset of a Hausdorff topolog-
ical vector space;

(2) Pi : X → 2Xi is L-majorized.
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Then there exists a maximal element x̄ ∈ X, i.e. Pi(x̄) = ∅ for all
i ∈ I.

In compact convex settings, Chang remarked that Lemma 2.1 im-
proves Theorem 3.4 of Kim and Yuan [7] without assuming that the set
Gi = {x ∈ X | Pi(x) 6= ∅} is open for each i ∈ I, which is very meaning-
ful contribution because the openness assumption on Gi is not natural
nor easy to show.

The following is also an essential tool in proving the existence of equi-
librium for generalized Nash game which is a special form of Theorem 4
in [3]:

Lemma 2.2. Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy where
I is a (possibly uncountable) set of agents such that for each i ∈ I,

(1) Xi is a nonempty compact convex subset of a Hausdorff topolog-
ical vector space;

(2) Ai : X = Πn
i=1Xi → 2Xi is a correspondence such that each Ai(x)

is nonempty closed convex, and the set Fi := {x ∈ X | xi ∈ Ai(x)} is
closed in X;

(3) for each y ∈ Xi, A−1
i (y) is open in X,

(4) Ai ∩ Pi : X → 2Xi is L-majorized in the set Fi.

Then Γ has an equilibrium choice x̂ ∈ X, i.e., for each i ∈ I,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.
Throughout this paper, all topological spaces are assumed to be Haus-
dorff, and for the other standard notations and terminologies, we shall
refer to [1-10].

3. A new model of generalized Nash game with insatiability

Now we recall some notions and terminologies in generalized Nash
equilibrium for non-cooperative pure strategic games. Let the set I
of players be possibly uncountable. Then, a generalized Nash game of
normal form (or social system) is the system of ordered triples Γ =
(Xi; Ti, fi)i∈I , where for each player i ∈ I, the nonempty set Xi is a
player’s pure strategy space, Ti : X → 2Xi is a player’s constraint
correspondence, and fi : X → R is a player’s payoff (or utility) function.
The set X, joint strategy space, is the Cartesian product of the individual
strategy spaces, and the element of Xi is called a strategy. When I is



694 Won Kyu Kim

any set of players, we shall use the notation as

X−i :=
∏

j∈I;j 6=i

Xj ;

and hence we write a typical strategy profile x = (xi, x−i) ∈ X =
Πi∈IXi = Xi × X−i. Then, a strategy profile x̄ = (x̄i, x̄−i) ∈ X is
called the social equilibrium (or generalized Nash equilibrium) for the
generalized Nash game Γ if the following system of inequalities holds:
for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≥ fi(xi, x̄−i) for each xi ∈ Ti(x̄).

Next, we first introduce an economic condition which presents a kind
of psychologic behavior as follows: Let Γ = (Xi; Ti, fi)i∈I be a gen-
eralized Nash game with the set I of players which is possibly infinite.
Then we can consider an insatiable condition for the constraint corre-
spondence Ti : X → 2Xi which satisfies the following strict inequality
with respect to the utility function fi: let x = (xi, x−i) ∈ X be an ar-
bitrarily given profile. If xi /∈ Ti(x), then there exists y ∈ Xi such that
fi(xi, x−i) < fi(y, x−i).

The interpretation of this behavioral condition is as follow: If the
strategy xi is not feasible in the game Γ = (Xi; Ti, fi)i∈I , the i-th player
can not choose the strategy xi so that the value of utility function
fi(xi, x−i) can not be attainable. At this moment, the most of indi-
vidual players might imagine and guess that there might be a better
strategy y ∈ Xi satisfying that fi(xi, x−i) < fi(y, x−i), i.e., there might
be a strategy having better payoff value. This is a kind of psychologic
and natural economic sense in the real strategic game situation. Hence
we formulate this concept as follows:

Definition 3.1. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game
with the (possibly infinite) set I of players. Then we call the constraint
correspondence Ti satisfy the insatiable condition (or insatiability) if
the following condition holds: for any x = (xi, x−i) ∈ X,
(∗) if xi /∈ Ti(x), then there exists y ∈ Xi such that fi(xi, x−i) <
fi(y, x−i).

If the constraint correspondence Ti satisfies the insatiable condition,
then the strategy x = (xi, x−i) ∈ X is a non-satiation strategy for the
game Γ; and the contrapositive form of (∗) states that “if fi(xi, x−i) ≥
fi(y, x−i) for each y ∈ Xi, then xi ∈ Ti(xi, x−i),” so that the strategy
xi ∈ Xi is clearly a best response for the player i. If for all player i ∈ I,
this condition holds true for the same strategy x = (xi, x−i) ∈ X, then
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this action x ∈ X is actually a social equilibrium for the generalized
Nash game Γ = (Xi; Ti, fi)i∈I .

4. Existence of social equilibria in generalized Nash games

As an application of Lemma 2.1, we begin with a new existence the-
orem of social equilibrium for generalized Nash game with insatiability
in a Hausdorff topological vector space.

Theorem 4.1. Let Γ = (Xi; Ti, fi)i∈I be a generalized Nash game
of normal form where Xi is a nonempty compact convex subset in a
Hausdorff topological vector space, and I be any (possibly uncountable)
set of players. Assume that for each i ∈ I,

(1) fi : X = Πi∈IXi → R is continuous, and quasiconcave in its i-th
variable;

(2) Ti : X → 2Xi is a constraint correspondence such that each Ti(x)
is a nonempty subset of Xi, and Ti satisfies the insatiable condition.

Then the generalized Nash game Γ has a social equilibrium x̄ ∈ X,
i.e., for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≥ fi(xi, x̄−i) for all xi ∈ Ti(x̄).

Proof. For each i ∈ I, we first define a preference correspondence
Pi : X → 2X by for each x ∈ X,

Pi(x) := {y ∈ Xi | fi(xi, x−i) < fi(y, x−i)}.
If xi /∈ Ti(x), then the insatiable assumption on Ti means that Pi(x)
can not be an empty set, and xi /∈ Pi(x). Next, we shall show that Pi is
a correspondence of class L.

For each x ∈ X, we will show that xi /∈ co Pi(x). Suppose the con-
trary, i.e., there exists x ∈ X such that xi ∈ co Pi(x). Then there exist
λ1, . . . , λn ∈ (0, 1], and y1, . . . , yn ∈ Pi(x) such that xi =

∑n
j=1 λjyj ,

and f(xi, x−i) < fi(yj , x−i) for all j = 1, . . . , n. Since fi is quasiconcave
in its i-th variable, we have

f(xi, x−i) <
n∑

j=1

λj · fi(yj , x−i) ≤ fi

( n∑

j=1

λjyj , x−i

)
= f(xi, x−i),

which is a contradiction.
And, it is easy to see that P−1

i (y) = {x ∈ X | fi(xi, x−i) < fi(y, x−i)}
is open in X since fi : X = Xi ×X−i → R is continuous in X. Hence
Pi is a correspondence of class L for each i ∈ I.
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Next, in order to apply Lemma 2.1, we shall introduce the qualitative
game Γ = (Xi, φi)i∈I as follows. For each i ∈ I, we introduce a set Fi

of Ti as

Fi := {xi ∈ Xi | xi ∈ Ti(xi, x−i) for x = (xi, x−i) ∈ X};
then Fi is a (possibly empty) subset of Xi.

Next, we define a correspondence φi : X → 2Xi by

φi(x) =

{
Ti(x) ∩ Pi(x), if xi ∈ Fi,

Pi(x), if xi /∈ Fi.

Then we shall show that the qualitative game Γ = (Xi, φi)i∈I has
a maximal element. For this, we first show that φi is an L-majorized
correspondence for each i ∈ I. Let x ∈ X be arbitrarily given with
φi(x) 6= ∅. Since Pi is a correspondence of class L, φi is clearly L-
majorized since for any open neighborhood Nx of x in X, φi(z) ⊆ Pi(z)
for each z ∈ Nx, and Pi is of class L. Therefore, φi is an L-majorized
correspondence for each i ∈ I.

Hence the qualitative game Γ = (Xi, φi)i∈I satisfies the whole as-
sumption of Lemma 2.1 so that there exists a maximal element x̄ ∈ X
such that φi(x̄) = ∅ for all i ∈ I. Then the maximal element x̄ ∈ X
is actually an equilibrium for the generalized Nash game Γ. Indeed,
if there exists an i ∈ I such that x̄i /∈ Ti(x̄), i.e., x̄i /∈ Fi; then
φi(x̄) = Pi(x̄) = {y ∈ Xi | fi(x̄i, x̄−i) < fi(y, x̄−i)}. Since Ti satisfies the
insatiable condition so that Pi(x̄) can not be an empty set. Hence we
conclude that for each i ∈ I, x̄i ∈ Fi, and so φi(x̄) = Ti(x)∩Pi(x) = ∅;
which means that for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≥ fi(xi, x̄−i) for all xi ∈ Ti(x̄).

Remark 4.2. (i) Theorem 4.1 has something different from the pre-
vious equilibrium existence theorems due to Debreu [4], Nash [8], Park
[9] and others in the following aspects:

(a) the index set I of players need not be finite;
(b) the strategy space Xi need not be a subset of a locally convex

space.
(c) Ti need not be lower semicontinuous nor upper semicontinuous;
(d) the best response sets need not be contractible nor acyclic.

(ii) In Theorem 4.1, we shall need the insatiable condition which is
a kind of behavioral psychologic assumption. It should be noted that
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the insatiable condition of Ti is relatively easy to calculate and check
the inequality on the payoff function fi in the generalized Nash game
Γ; on the other hand, the assumptions in [4,9] are not easy to check the
contractible or acyclic assumptions in general.

Finally, as an application of Lemma 2.2, we shall prove another ex-
istence theorem of social equilibrium for generalized Nash game in a
Hausdorff topological vector space without assuming the insatiable con-
dition for Ti:

Theorem 4.3. Let Γ = (Xi; Ti, fi)i∈I be a generalized Nash game
of normal form where Xi is a nonempty compact convex subset in a
Hausdorff topological vector space, and I be any (possibly uncountable)
set of players. Assume that

(1) fi : X = Πi∈IXi → R is continuous, and quasiconcave in its i-th
variable;

(2) the constraint correspondence Ti : X → 2Xi is such that each
Ti(x) is nonempty closed convex, and the set Fi := {x ∈ X | xi ∈ Ti(x)}
is closed in X;

(3) for each y ∈ Xi, T−1
i (y) is open in X.

Then the generalized Nash game Γ has a social equilibrium x̄ ∈ X.

Proof. The first part of proof is the same as the proof of Theorem
4.1. Indeed, for each i ∈ I, we first define a preference correspondence
Pi : X → 2Xi by for each x ∈ X,

Pi(x) := {y ∈ Xi | fi(xi, x−i) < fi(y, x−i)}.
Then xi /∈ Pi(x) for each x ∈ X, and as shown in the proof of Theorem
4.1, we can obtain that Pi is of class L. As remarked, note that Fi may
be empty. And it is easy to see that Ti∩Pi : X → 2Xi is an L-majorized
correspondence in the set Fi. Indeed, for any x ∈ Fi with (Ti∩Pi)(x) 6= ∅,
and any open neighborhood Nx of x in X, (Ti ∩ Pi)(z) ⊆ Pi(z) for
each z ∈ Nx, and Pi is of class L so that Ti ∩ Pi is L-majorized in Fi.
Therefore, the abstract economy Γ̂ = (Xi, Ti, Pi)i∈I satisfies the whole
assumption of Lemma 2.2 so that there exists an equilibrium point x̄ ∈ X

for the abstract economy Γ̂. Hence we conclude that for each i ∈ I, we
have x̄i ∈ Ti(x̄) and Ti(x)∩Pi(x) = ∅, which means that for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≥ fi(xi, x̄−i) for all xi ∈ Ti(x̄).
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Remark 4.4. When Ti(x) := Xi for each x ∈ X in Theorem 4.2,
the assumptions (2) and (3) for the constraint correspondence Ti is au-
tomatically satisfied so that we can obtain a generalization of Nash’s
equilibrium existence theorem in a Hausdorff topological vector space
with infinite players.
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