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RESULTANT AND DISCRIMINANT OF LINEAR
COMBINATION OF POLYNOMIALS

EunMi1 CHor*

ABSTRACT. We investigate efficient method for the computation of
resultant and discriminant of polynomials. The aim of this paper
is to provide not only those values but also visual structure from
elementary matrix calculation.

1. Introduction

Let K be a field of characteristic 0. The irreducibility of polynomial
plays important roles more in recent application areas, such as coding,
cryptography and computer algebra, etc. One of the main tools for
determining irreducibility is discriminants and resultants. Resultant can
provide a criterion whether a system of polynomials have a common
root without explicitly solving for the roots [1]. Moreover resultants are
applied systematically to provide constructive solutions to problems in
computer graphic and algorithmic algebraic geometry ([4]).

In this paper we shall discuss the resultant and discriminant, and
investigate effective computation methods involving matrices. There are
some researches that focused on those computation ([3], [5]). Currently
computer algebra systems such as Maple and Mathematica work well for
those computations. The standard forms for discriminant and resultant
of f and g in Maple are >discrim(f, z) and >resultant(f, g, z). However
the aim of the work is to provide not only the value of resultant and
discriminant but also the visual way from matrix calculation.
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2. Preliminary for resultant and discriminant

Let f(z) = Y ja;z" and g(z) = > im0 bjz? be in K|x] of degree n
and m respectively. Let o; (1 < i < n) and 3; (1 < j < m) be roots
of f(z) and g(x) in some splitting fields. The resultant of f and g is
defined by

R(f,g) = a™b", HH

i=1j5=1

If we write f(z) = a, [[}=; (v — ;) and g(z) = by, [[[2, (z — B;) then

R(f,g) = a T] bl — B;) = a [ o(o) = (1), Hf (5)).
=1

4,j=1

We may refer to [2] and [6] as standard references for resultant. One of
the most remarkable results about resultant is that R(f,¢g) is described
in terms of determinant of the Sylvester matrix of f and g.

LEMMA 2.1. Let f(z) = Y% ja;x° and g(z) = 2o bjx) € Klx].
Then R(f,g) is the determinant of (n +m) x (n 4+ m) Sylvester matrix
composed of all coefficients:

Qp  Gp—1 Gp—2 -+ a1 a - 0
o O 0 PR an an—l Y PR aO
e A S S
0 0 N T

For f(x) € K|z] with leading coefficient a,, and roots a; (1 <i <n)
in a splitting field of K, the discriminant A of f is defined by

Af)y=a? ] (0i—ey)*

1<i<j<n

LEMMA 2.2. Let f(x) € K[z] be of degree n and f'(x) be the formal
derivative of f(z). Then A(f) = (—1)"(»=D/2q-1 R(f, ).

A(f) = 0 if and only if f shares roots with its derivative, while
R(f,g) = 0 if and only if f and g have at least one common root.
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3. Resultant of the product of polynomials

We shall study the resultant of the product of polynomials. If deg f =
n and deg g = m, the resultant involves computations of (n+m)x (n+m)
matrix which is too large to compute. Hence it is useful to decompose
a polynomial into smaller degree ones as follow.

THEOREM 3.1. Let f(z),g(x), fi(x) and g;(x) € K[x]. Then

1) R(f---f,9) = R(f,g)° and R(f?,g") = R(f,g)®" for s,u > 0.

(1) R(f---f,9)=R(f.9) (f%,9") = R(f,9)

s times

(2) R(f Hz fingj gj) = R(fag) Hj R(f> gj) Hz R(fhg) Hm‘ R(fzygj)-

Proof. Write f(z) = an [[}_;(z — i), g(z) = bp [[[2,(x — B;). Tt
is known that R(fh,g) = R(f,g)R(h,g) for any h(z) € K|z]. In fact, if
h(z) = ¢; [Th_; ( — %) with roots vx of h(x) then

(1h)(@) = anee [ [ (@ — ai)(@ — )
ik

has zeros «; and y,. By letting §; by §; = o; for 1 <4 < n, and §,, 41 = Yk
for 1 <k <t, we have

R(fh.g) = (ancy)" b} II (6 — 5;)
Fh(8)=0, g(8;)=0

n t
= attp, ] (8-, I (w—8)
g(ﬁj):(l =1 g(ﬁj):()» k=1
= R(f,9) R(h,g).

So R(f : fag) = R(f>g)s and R(fs’gu) = R(f’g)su for any s,u > 0.
Moreover since R([] fi,g) =1 R(fi,g), we have

R(foi,gHgﬂ = R(ﬂg)R(f,ng)R(H fi,g)R<H fi,Hg»
= R(f,9) [[ R(f,9) [ R(fis9) [ R(fir9p)- O
J i ,J

For example,
R(x5 + 22 —m2 — 2,22 —2)
= R(@@*+1,2° —2)R(z* — 1,2* = 2)R(2® + 2,2° — 2)
= f(V2)f(=V2)g(1)g(~D)h (\/i)h(—f) =3%(-1)%4% =12%,
where f(z) = 2? + 1, g(z) = 2> — 2 and h(z) = 22 + 2.
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Euclid algorithm says that ged(n,m) (n > m) equals that of m and
the remainder of n by m. A similar algorithm holds for resultant that
R(f,g) equals that of g and the remainder of f(x) by g(x). In fact, if
degf =n >m = degg and f(z) = q(x)g(x) + r(z) with ¢(z), r(z) €
Klz] (r(z) = 0 or deg(r) < m) then with roots ; (1 < j < m) of g(x)
in some splitting fields, we have

R(f,9) = ”mb”H (B1)9(B;) +r(B))) = (=)™}, H

because g(;) = 0. Thus if we let 0 < degr =t < m then
R(f.9) = (=) (=1) "0 (1) 8, HT (5)

:(_1) m(n— tbn t mtbt H /B_] _(_ mn t)b%_tR(T’,g).

Moreover R(f, fh+ g) = R(f,9) for any f,g and h.
THEOREM 3.2. Let f(x),g(z), h(z), fi(x) € K[z] and s,u > 1. Then
ATy ) =TT AG) (Thcieyes RU £) and A(F7g") =0
Proof. From the above consideration we have

R(fg,(f9)) = R(fg,f'9+ fg') = R(f, f'g+ fd') - R(g, f'g + fd').

Moreover since
R(f,f'g+ fg) = (=)™ "D apm=V R(f, f'g)

and R(g, f'g+ fd') = (—1)m2("_1) pr(n=1) R(g, f¢'), it follows that
R(fg,(f9)") : 1
2 2 nim— m(n—
= (1D e D jR(f, F'9)R(g. f9)
2 2 n(m— m(n—
= (=1)" (m—=1)+m (n—1)+nman( ) ( R(f, f) (f, Q)QR(Q,Q/),
because R(f,g) = (—=1)""R(g, f). By Lemma 2.2 and Theorem 3.1,

A(fg) = (=1)rminm=0/2q W LR(fg, (fg)")

:( 1)nm(nm 1)/2 716 ( 1)n2(m 1)+m?(n—1)+nm n(m—l)bm(n—l)

(1) g, A () (~1)7mmD/2 b A(g) - R(F,g)?
= A(H)A()R(f, 9)*.
Thus A(f2) = A(f)A(H)R(S. )2 = 0 for R(f,f) = 0. And A(f) =
0= A(g"), s0 A(fg") = A(f)A(g") R(f*,g") = 0. Now for any h(x),

A(fgh) = A(f) Alg) A(h) (R(f,9) R(f,h) R(g,h))*,
S0 A(Hz 1fz) H§:1 A(fi)(H1§i<j§5R(fi7fj)) by induction. O]
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The example below Theorem 3.1 can be seen by Theorem 3.2:

R(25 + 221 — 22 — 2,27 — 2)
= R((x* = 2)(z* +42% +7) +12,2% — 2) = R(12,2°% — 2) = 122

In next theorem we study relationships between resultant of f(z) and
that of monic polynomial of f(z). Indeed if f(z) = an f«(z) and f'(z) =
an f' (x) then according to some algebraic properties of resultant,

A(f) = (_l)n(n_l)ﬂagl R(an, an) R(amf*/) R(f«,an) R(f*vf*/)
= i ()M VRR(E £ = a2 A(L),

n n

thus R(f,g) = R(ay, bm) R(an, g+) R(fe,bm) R(f«, 9+) = al'bl R(f«, g«),
and R(f, f.) = R(f. L f) = R(f, L) R(f, f) = 0.

This can be illustrated visually via matrix operation.

THEOREM 3.3. Let f(x) and g(x) be of degree n, m with leading
coefficients a,, and b,,. Let f.(x) = a,, ' f(x) and g.(x) = b,,}g(z). Then
R(f,9) = apbR(f«, g) and A(f) = ax"">A(f.).

Proof. Without loss of generality, let f.(z) = 2" +a, 12" '+ -+ag

and f(x) = anfe(x). And let g.(z) = 2™ + bp_12™ ' + -+~ + by and
9() = bpg«(x). Then

Ap  ApGp_1 -+  Gpdg 0 0
1 0 0  Gp GpGp_1 e anaQ

(f, ) - b bmbm—1 - bmbo 0
0 0 0 S b binbm—_1  bmbg

Since the upper n rows contain a, commonly while the lower m rows
contain by,

1 an_q - ao 0 . 0
1 Apn—1 ag “e O
R(f,g)=agby |0 0 o 1 ap1 ceag | =apby R(fy, g4)-
1 by - e bo . 0
0 0 1 coo bt b

0
Moreover since R(f, f') = aa? ' R(f«, f1) = a?* L R(f., f!), we have
A(f) = (=1)"DPart @271 R(fa, f1) = ai" T VA(S).
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Theorem 3.3 guarantee that only monic polynomial is enough to be
considered for resultants and discriminants.
If we know all roots «; of f (x) and (; of g(x) explicitly then

R(f —amb"HozZ Bj) = "mb"Hfﬁj ) =ap Hga,

For instance, if f(x) = 22 — 1 then R(f,g) = g(1)g(2) for any g(z). If
a1 and ay are roots of f(x) = ax? + bx + ¢ then
R(f,9) = a"®#7g(a1)g(az) and A(f) = a*(a1 — a)® = b — dac.

However finding roots of polynomials is not an easy task in general.
Instead, the discriminant is used to get information about the roots of
polynomials.

4. Resultant of the linear combination of polynomials

The multiplicative equality R(fh,g) = R(f,g)R(h,g) was discussed
in Section 3. But the additive equality R(f + h,g) = R(f,g) + R(h,g)
does not hold that, if f(z) = h(z) =z + 1, g(z) = 2> + x + 1 then

1

1

1

2 20 11
=2

0
1 0 1 1
1 1 1 1 1 1
= 2 (R(f.9) + R(h,g9)) # R(f.g)+ R(h,g).
However R(f,g+ g) = 2R(f,g) if deg f = 1. And there are also many
situations that the equality holds.

THEOREM 4.1. Let g(z) = bijx+by € K[x]. Ifdeg f = n and degh =t
with n >t then R(f + h,g) = R(f,g) + (=b1)""'R(h, g).

Proof. Let f(z) = Y0 ya;x’ and h(z) = Y i_,ciat. Since n > t,
(f +h)(@) = Eilper @iz’ + Xl + ei)a’, so

R(f+h,g) =2 +

— o

0
1
1

Gn  Gpn-1 -+ Q41 G +C -+ Qo+ Co
by bo 0 0 0
R(f+hg)=] 0 b b 0 0
0 0 b1 bo
Qp Qp_1 -+ Qi1 Gp -+ Qg 00 -+ 0 ¢ - ¢
by by 0 0O --- 0 bybgy O -~ 0 -+ 0
= 0 by bo 0 N | N o O PR o --- -+ 0

00 0 - o b by 00 0 - v b b
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O ... O Ct ... CO
by by O - - 0
=R(f,g9) + (=b) o =
0 b : " : :
0 -+ oo o by bo
Ct “ee Cl CO
= R(f,g)+ (=by)"t| b Do O L= R(f, ) + (=by)"*R(h, g).
0 b1 b

O]

THEOREM 4.2. Let degf = n, degg = m, and b,, be the leading
coefficient of g. If n = m then R(f+g, f) = R(g, f) = (-=1)""R(f,g). If
n <m then R(f+yg, f) = R(g, ) and R(f+g,9) = by, " (=1)""R(f, ).

Proof. Let f(z) = Y. ja;z’ and g(x) = Y bia’. If n = m then
(f +9)(x) =X3"(a; + b))z* and R(f + g, f) is the determinant of the

2n X 2n matrix:

an+bn e a0+b0 e 0
R(f+g.f)= 0 v aptby o+ ag+bo
an PRI aO PRI 0
0 anp ag
b, -+ -+ by 0O - 0
_ 0 0 bn bO _
“la, - - ag 0 - 0 = R(g, f)
0 0 . ap - - ag

where we subtract n + ¢th row from ith row for 1 <i <n.
Before we go on, we begin with an example for n = 3 < m = 5. Then

bs by az3+bs ax+by ar+b O 0

0 b5 b4 a3+b3 a2+b2 0
R(f+g,f): 0 0 b5 b4 a3+b3 a0+b0

as as a1 ag 0 0

0 0 0 as ap

bs by by by by bg 0 O
0 b5 b4 b3 b2 bl bO 0
10 0 by by b3 ba by b =R
as as ap a 0 0 0 0 (9.9)

0 0 0 "+ a3 as a1 ao
by subtracting m 4+ ith row from ith for 1 <7 < n. On the other hand,
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bs by asz+bs ag + by 0
0 b5 by as + b3 ao + by
R(f+g,9) = 0 0 0 0 bs by
( ) bs by b3 bo 0
0 0 0 bs by
a3 ay a; a 0 0 0 O
0 0 .0 az azx a1 ag
= (=b)*| by by by by b by 0 0 | =5 R(f9).
0 by by by by by by O
0 0 b5 b4 b3 b2 bl bO
Now for any deg f = n < degg = m, we have
b a, + b, a1 +b1 ag+ by 0
o 0 bm Ay + bn ag + b()
R(f+gaf)_ an, ay ao O 0
0 0 an, ao
bm by bo O
o 0 bm . bo -
| an a1 a O - | R(g, 1),
0 0 ap - ap
by subtracting m + ith row from ith row for 1 <+¢ < n. And similarly
bm Ay + bn a1 + bl 0
0 b an +b, ay+by ag+b
0 bm b by bo
Gnp ay aop 0
— (_ m—n 0 Qn R ai ao _ [ m—n
O bm bl bO

We study resultant R(s1f + s2g,t1f + tag) of linear combination of f

and g. If f(x) = a1z + ap and g(x) = bz + by are linear then

R(s1f + 829,01 f +t2g) =

s101
t1 a1

S10a0
t1a0

ai
S1t2

ag

by bo

siaq + saby  s1ag + s2bg
tray + taby  tirag + tabg
s1a1 S1Qp 82b1 82b0 82b1 82b0
t2b1 tgbo t1a1 tlao t2b1 tgbo
ay Qg S1 tl
- 82t1 bl bO = S9 tQ ’ R<f7 g)
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Now if f(z) = a2 + a1z + ag and g(x) = bex? + byx + by are qua-
dratic, then

S1a9 + S9by  s1aq + S2b1 s1ag + s2bg 0
_ 0 S1ag + Sgbg si1a1 + 52b1 S1Qa0 + Sgbo
R(Slf—i—S?g’ t1f+t2g) o tl(lg -+ t2b2 t1a1 + t2b1 t1a0 + tzbo 0
0 tias + tabs t1aq + taby  tiag + tabg
as a1 ag 0
_ 82 0 a9 aq agp
1 t1a2 + t2b2 t1a1 + t2b1 t1a0 + tgbo 0
0 t1a2 + tgbg t1a1 + thl t1a0 + thO
a2 ay ao 0
+ 518 0 b2 b bo
Y21 tag +taby  trar +taby trag + tabo 0
0 tias +t2by  tiar +t2b1y  tiag +tabg
b2 by bo 0
+ 5158 0 a2 41 o
122 t1a2 + t2b2 t1a1 + t2b1 t1a0 + tzbo 0
0 tias +taba  tiay +1t2by  tiag + tabg
ba by bo 0
e 0 b by bo
2 tiag + taby  tiay +toby  tiag + tabg 0
0 tlag + thQ t1a1 + t2b1 tlao + tho

We write it by
R(s1f + s2g,t1f +tag) = S%IA\ + s182|B| + s182|C| + 8%|D\.

Then the first determinant |A | can be decomposed into 4 smaller parts

as a1 ag 0 as al ap 0
|A | _ 0 as aq Qo 0 a9 aq Qo
t1&2 t1a1 tlao 0 t1a2 t1a1 t1a0 0
0 tlag t1a1 t1a0 0 t2b2 thl tgb()
as ajq apn 0 as aj an 0
+ 0 as [25] ag + 0 as ai ag
tgbg tzbl tgbo 0 t2b2 tzbl tgbo 0 ’
0 t1a2 t1a1 t1a0 0 t2b2 t2b1 tgbo

where the first three determinants are zero, hence

a9 aq aon 0

. 0 az ay ao _ 2.
Al = toby toby taby 0 =15 R(f,9).

O tg bg tg b1 t2 bO
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Similarly |B| is decomposed into 4 parts where three of them are 0, so

ag ay agp 0 as a1 Qg 0
_| 0 by by bo | _ 0 by b1 bo | _
Bl = taba  tabr  tabo 0 = tit2 by by by O = —t1it2R(f, 9).
0 tiaz tiar tiao 0 axy a1 ap

Analogous consideration for |C| and |D| gives rise to
R(s1f + s2g, t1f +tag) = s|A| + s152|B| + s152|C| + 83| D)
= (sit3 — s1s9t1ty — s1s2t1ty + s517) R(f,g)
2
t
= (51t2 - 32t1)2R(f’g) = z; t; R(fa g)

If s1 =s9=1t1 =1and to =0 then R(f +g,f) = (—=1)"R(f,g), this
is Theorem 4.2. We also have the following theorem

THEOREM 4.3. Let f(x),g(z) € K[z] be of degree n. Then,

n

R(f,g), for si,t; € K

1 ty

R(s1f + s2g,t1f +tag) = t

Proof. Let f(z) =Y ja;z" and g(z) = Y b;z’. Then
R(s1f + s29,t1f + t2g)

S$10p, + Sgbn s si1aq + 32b1 S1Qa0 + SQbo 0---
B 0 0  s1an + Saby siaq + saby -
| tian +taby --- tiag +t2by tiag +taboy 0.
0 0  tiay, +taby tiay +toby -

This determinant can be decomposed into the sum of 22" determi-

nants, but among them there are only 2" nonzero determinants so that
we can write

R(s1f + s2g,t1f +t2g)

s1a, --- Sia1 Siag 0 .. sia, --- sia; Siag 0 ..
. 0 0 S10n siaip .. + 0 0 Sgbn 82b1 ..
o tzbn s t2b1 tgbo 0 .. tgbn s tgbl tgbo 0 ..
0 0 tzbn thl .. 0 0 t1an, tiay ..
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S$1Qyp S101 S100 0 .. San ce 52b1 5260 0 ..
0 0 S2b, S9by .. + 0 0 Soby, S9by ..

tgbn R tgbl tho 0 .. tlan te t1a1 t1a0 0 ..
0 0 t1an, tiaq .. 0 0 t1an tiaq ..

- ((31t2)n + (s1ta)™ ! (—sat1) 4 - - + s1ta(—sat1)" ! + (*52’51)”)R(f, 9)

n

R(f,9)- u

s1 ty

= (s1t2 — s2t1)™ R(f,g) = o 1
2 ta

We generalize this to linear combination of three polynomials.
THEOREM 4.4. If f; (1 <i < n) are linear polynomials then

n n Si tg
Ry sifis 2oima tifi) = Yoi<icj<n DijR(fi, [5) for Dyj = ‘

55 tj

Proof. If fi(x) = a1z + ag, fo(x) = biz + by, f3(x) = c1x + co then
R(s1f1 +s2f2 +s3fs,tifi +tafa +t3f3)

2 2 ’R(f1,f2)+' i; 2 R(f1, f3) +

S 12
83 t3

R(f2, f3).

O]

Now if f1 = Z?:o a;xt, fo = 212:0 b;x! and f3 = Z?:o c;x! are qua-
dratic then we have

R(s1f1 + safa+ s3f3,t1/1 +tafo +13f3)
S1a9 + Sobs + S3ca  s1aq1 + Soby + 831 S1a0 + S2bg + S3¢0

. 0 S1a9 + Sobs + S3co s1a1 + S2by + s3¢1
tiag + taby +t3ca  tiar +t2b1 +tscr tiap + tabo + taco
0 t1a2 + thQ + t3C2 t1a1 + tgbl + t361

Let A = [a2 a1 ag], B = [b2 b1 bo] and C = [c2 ¢1 ¢p]. Then

R(s1f1 4 s2fa + s3f3, t1fi +tafo +t3f3)

A0 A0 A0 A0

= 5313 (])3 % — s189t1to (])3 ‘% — s183t1to (])3 ‘Aa + s3tots (])3 %
0B 0B 0 C 0 C

A0 A0 A0 A0

—s18atats OB CO + 5183t3 OB CO + s2tot3 (()3 ‘% — $18S9tits ((): ‘%
0B 0B 0B 0B
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—8183t1t3

—8182t1t2

+S§t1t3

—8283t1t3

—8183t1t2

78253t1t3

+S§t1t2

Thus

°cwWe

°cQ°w

WoP o Qoo

QoWo WoPp o Qo w»o

+ s3t3

+ s3t7

- 5283t1t2

2
+ 5182t3

2
—+ 5253t1

+ S%tltg

— S183tat3

EunMi Choi

CQACWE QP 2ACPH CACH W B WoPr o Qo wro

QoPo Qoo Wepo Qopo oo

R(s1fi + safa+ s3fs, tifi + tafo +t3f3)

= DL,R(f1, f2) + DI R(f1, f3) + D33 R(f2, f3)

—+ (78183?51152 —+ S%tgtg —+ SQSgt% — Slsgtltg)

—+ (78182152153 + Slsgt% —+ Sgtltg — 8283t1t2)

A0 A0
0B 0B
+3182t§ C 0 —8183t2t3 C 0
0 C 0 C
A0 A0
0 A 0 A
+8283t% B o —8182t1t3 B o
0 C 0 C
C 0 C o
0 A 0 A
— S18212t3 B 0 + s3tits B 0
0B 0B
B O B o0
0B 0B
+S%t§ C 0 78283t2t3 C 0
0 C 0 C
A0 A0
0 A 0 A
+S§t% C 0 751$3t1t3 C 0
0 C 0 C
C o C 0
0 A 0 A
+ s183t3 B 0 — s2s3tatz | g 0
0B 0B
B 0 B O
0B 0B
—8283t2t3 C 0 +S§t% C 0
0 C 0 C

A0 A0

0 A " 0 A

B O C o

0 C 0B

A0 C o0

0 C " 0 A

B 0 B O

0B 0B
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A0 B 0
0B 0 A
+ (8182t§ — §183taty — S983t1t3 + S%htg) C 0 + C 0
0 C 0 C
= D3 R(f1, f2) + Di3R(f1, f3) + D33 R(fa, f3)
A0 A0 A0 C o0
0 A 0 A 0 C 0 A
+ DDz || g ol Tl ¢ o —Di2Da2s | | g ol TI B o
0 C 0B 0B 0B
A0 B 0
0B 0 A
+ D13D23 C 0 + C 0
0 C 0 C
s1 t s1 t So 1o
where Dy = , D13 = and Dy =
tg S t3 t3

Therefore it gives rise to the following theorem.

THEOREM 4.5. If f1 = Z?:O aixi, f2 = Z?:O biﬂj‘i, f3 = Z?:D Cﬂ]i
then

3 3
R(Z S5 fjs thfj) = D}LR(f1, f2) + DisR(f1, f3) + D3sR(f2, f3)
=1

J=1

0 0
A C
+2 | Di2D13 0 — D12D>3 0 + D13Do3

oo
oo
o Qo p
Qo @o

C B

where A, B, C and D;; are as above. Furthermore
3 3
RO " sifj, Y _tif;) = DLR(f1, f2) + DB R(f1, f3) + D33 R(fa, f3)
j=1 j=1

+2D12D13 ((AB)20(AC)20 — (AB)21(AC)10)
+ 2D19 D93 ((AB)ZO(BC)2O - (AB)Ql(BC)lo)

+ 2D13Da3 ((AC)20(BC)20 — (AC)21(BC)ho) ,

a; aj

bi b

a;  Qaj

b b

G Cj

where (AB);; =  (AC)i; = and (BC)ij =

G Cj
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A 0 A 0 a b ¢ O
. 0 A| |0 A . d e f 0] _
Proof. 1t is easy to see B ol=lc o . Since 0 g hoil|”
0 C 0 B 0 j k 1
a b h i| |a ¢ g 1 we have
d e k1 d f ji vy
A 0 A 0
0 A _ B 0 _ as ap a1 Qo + g Qo a2 Qg
B 0 - 0 A o bg b1 C1 Co b2 bo C2 Co
0 C 0 C
= (AB)20(AC)20 — (AB)21(AC)10,
A 0 A 0
0 C _ B 0 _ as Qi C1 (o + a2 Qo Co (o
B 0| 0 C | by b b1 by by b by bo
0 B 0 B
= (AB)20(CB)20 — (AB)21(CB)10,
A 0 A 0
0 B _ C 0 _ A Qa7 b1 bo + as Qap b2 b()
C 0 o 0 B o Co C1 C1 (o Co Co Co (o
0 C 0 C
= (AC)20(BC)20 — (AC)21(BC)10,
so it follows the conclusion. O

References

[1] E. W. Chionh, M. Zhang, R. Goldman, Fast computation of the Bezout and
Dizon resultant matrices, J. Symbolic Computation, 33 (2002), 13-29.

[2] H. Cohen, Resultants and Discriminants. A Course in Computational Algebraic
Number Theory, New York: Springer Verlag, 119-123, 1993.

[3] G. E. Collins. Subresultants and reduced polynomials remainder sequences, J.
Assoc. Comput. Mach.(J.ACM) 14 (1967), 128-142.

[4] D. Cox, J. Little, D. OShea, Using Algebraic Geometry, New York, Springer
Verlag, 1998.

[5] D. Manocha, J. Canny, Multipolynomial resultant algorithms, J. Symbolic Com-
putation, 15 (1993), no. 2, 99-122.

[6] B. L. van der Waerden, Algebra, Vol 1, New York, 1970. (translate from German
edition, 1966)



Resultant and discriminant of linear combination of polynomials 677

*

Department of Mathematics
Hannam University

Daejeon 306-791, Republic of Korea
E-mail: emc@hnu.kr



