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A COMMON FIXED POINT THEOREM ON FUZZY
2-METRIC SPACES
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Abstract. In this paper, we prove a common fixed point theorem
for four mappings on fuzzy 2-metric spaces. Our result is an exten-
sion of results of S. H. Cho [2] to fuzzy 2-metric spaces. Also, it is
a generalization of a result of S. Sharma [11].

1. Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [13] in
1965. To use this concept in topology and analysis, many authors have
extensively developed the theory of fuzzy sets and applications. With
the concept of fuzzy sets, the fuzzy metric space was introduced by I.
Kramosil and J. Michalek [8] in 1975. M. Grabiec [5] proved the con-
traction principle in fuzzy metric spaces in 1988. Moreover, A. George
and P. Veeramani [4] modified the notion of fuzzy metric spaces with
the help of t-norms in 1994. Gähler [3] investigated 2-metric spaces in
a series of his papers. Sharma, Sharma and Iseki [12] investigated, for
the first time, contraction type mappings in 2-metric spaces. Many au-
thors have studied common fixed point theorems in fuzzy metric spaces.
Some of interesting papers are Y. J. Cho [1], George and Veeramani [4],
Grabiec [5], Kramosil and Michalek [8] and S. Sharma [11].

S. H. Cho [2] proved a common fixed point theorem for four mappings
in fuzzy metric spaces and S. Sharma [11] proved a common fixed point
theorem for three mappings in fuzzy 2-metric spaces. In this paper we
prove a common fixed point theorem for four mappings in fuzzy 2-metric
spaces. Our theorem is an extension of results of S. H. Cho [2] to fuzzy
2-metric spaces. And also, it is a generalization of result of and S.
Sharma [11].
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2. Preliminaries

Now we begin with some definitions:

Definition 2.1. (Schweizer and Sklar [10]) A binary operation
∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if ([0, 1], ∗) is an
Abelian topological monoid with unit 1 such that a ∗ b ≤ c ∗ d whenever
a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}. We use a

prefix notation 4(x, y) instead of the infix notation x∗y for x, y ∈ [0, 1].
A t-norm 4 is said to be H-type [6] if the family of {4m(t)}∞m=1 is
equicontinuous at t = 1, where41(t) = 4(t, t), 4m(t) = 4(t,4m−1(t)),
m = 1, 2, · · ·, and t ∈ [0, 1].

Note that a t-norm 4 is of H-type if and only if for any ε ∈ (0, 1),
there exists δ ∈ (0, 1) such that x > 1 − δ implies 4n(x) > 1 − ε for
all n ≥ 1. It ease to see that the minimum t-norm is of H-type. It is
known that the only t-norm 4 satisfying 4(s, s) ≥ s for all s ∈ [0, 1] is
the minimum t-norm (see[7]). So, the t-norm 4 satisfying 4(s, s) ≥ s
for all s ∈ [0, 1] is of H-type.

Definition 2.2. (I. Kramosil, J. Michalek [8]) The 3-tuple (X, M,4)
is called a fuzzy metric space if X is an arbitrary set, 4 is a continuous
t-norm of H-type and M is a fuzzy set in X2 × [0,∞) satisfying the
following conditions:

(1) M(x, y, 0) = 0,
(2) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, z, t + s) ≥ 4(M(x, y, t),M(y, z, s)),
(5) M(x, y, ·) : [0, 1) → (0, 1] is left continuous for all x, y, z ∈ X and

t, s > 0.
Note that M(x, y, t) can be thought of as the degree of nearness

between x and y with respect to t.

Example 2.3. Let (X, d) be a metric space. Define a ∗ b = ab or
a ∗ b = min{a, b} and for all x, y ∈ X and t > 0,

M(x, y, t) =
t

t + d(x, y)
.

Then (X, M, ∗) is a fuzzy metric space. We call this fuzzy metric M
induced by the metric d the standard fuzzy metric.
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Definition 2.4. (Gähler [3]) Let X be a nonempty set. A real valued
function d on X ×X ×X is said to be a 2-metric on X if

(1) given distinct elements x, y of X, there exists an element z ∈ X
such that d(x, y, z) 6= 0,

(2) d(x, y, z) = 0 when at least two of x, y, z ∈ X are equal,
(3) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X,
(4) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w ∈ X.

The pair (X, d) is called a 2-metric space.

Example 2.5. Let X = R3 and let d(x, y, z) := the area of the
triangle spanned by x, y and z which may be given explicitly by the
formula,
d(x, y, z) = |x1(y2z3 − y3z2)− x2(y1z3 − y3z1) + x3(y1z2 − y2z1)|, where
x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3).
Then (X, d) is a 2-metric space.

Definition 2.6. (S. Sharma [11]) The 3-tuple (X, M,4) is called a
fuzzy 2-metric space if X is an arbitrary set, 4 is a continuous t-norm
of H-type and M is a fuzzy set in X3 × [0,∞) satisfying the following
conditions : for all x, y, z, u ∈ X and t1, t2, t3 > 0,

(1) M(x, y, z, 0) = 0,
(2) M(x, y, z, t) = 1 for all t > 0 if and only if at least two of the

three points are equal,
(3) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t) for all t > 0,

(Symmetry about first three variables)
(4) M(x, y, z, t1 + t2 + t3)

≥ 4(M(x, y, u, t1),M(x, u, z, t2),M(u, y, z, t3)),
(This corresponds to tetrahedron inequality in 2-metric space. The
function value M(x, y, z, t) may be interpreted as the probability
that the area of triangle is less than t.)

(5) M(x, y, z, ·) : [0, 1) → [0, 1] is left continuous .

Example 2.7. Let (X, d) be a 2-metric space and denote4(a, b) = ab
for all a, b ∈ [0, 1].

For each h,m, n ∈ R+ and t > 0, define M(x, y, z, t) = htn

htn+md(x,y,z) .

Then (X,M,4) is an fuzzy 2-metric space.

Definition 2.8. Let (X, M,4) be a fuzzy 2-metric space.
(1) A sequence {xn} in fuzzy 2-metric space X is said to be convergent

to a point x ∈ X (denoted by lim
n→∞xn = x or xn → x) if for any

λ ∈ (0, 1) and t > 0, there exists n0 ∈ N such that for all n ≥ n0
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and a ∈ X, M(xn, x, a, t) > 1− λ. That is, lim
n→∞M(xn, x, a, t) = 1

for all a ∈ X and t > 0.
(2) A sequence {xn} in fuzzy 2-metric space X is called a Cauchy

sequence, if for any λ ∈ (0, 1) and t > 0, there exists n0 ∈ N such
that, for all m,n ≥ n0 and a ∈ X, M(xn, xm, a, t) > 1− λ.

(3) A fuzzy 2-metric space in which every Cauchy sequence is conver-
gent is said to be complete.

Definition 2.9. Self mappings A and B of a fuzzy 2-metric space
(X,M,4) is said to be compatible, if lim

n→∞M(ABxn, BAxn, a, t) = 1

for all a ∈ X and t > 0, whenever {xn} is a sequence in X such that
lim

n→∞Axn = lim
n→∞Bxn = z for some z ∈ X.

3. Main result

Lemma 3.1. M(x, y, z, ·) is non-decreasing for all x, y, z ∈ X.

Proof. Let s, t > 0 be any points such that t > s. Then t = s+ t−s
2 +

t−s
2 . Hence we have

M(x, y, z, t) = M(x, y, z, s +
t− s

2
+

t− s

2
)

≥ 4(M(x, y, z, s),M(x, z, z,
t− s

2
),M(y, y, z,

t− s

2
)

= M(x, y, z, s).

Thus, M(x, y, z, t) > M(x, y, z, s),

From now on, let (X,M,4) be a fuzzy 2-metric space with the fol-
lowing condition : lim

t→∞M(x, y, z, t) = 1 for all x, y, z ∈ X.

Lemma 3.2. Let (X, M,4) be a fuzzy 2-metric space. If there exists
q ∈ (0, 1) such that M(x, y, z, qt + 0) ≥ M(x, y, z, t) for all x, y, z ∈ X
with z 6= x, z 6= y and t > 0, then x = y.

Proof. Since M(x, y, z, t) ≥ M(x, y, z, qt + 0) ≥ M(x, y, z, t) for all
t > 0, M(x, y, z, ·) is constant. Since lim

t→∞M(x, y, z, t) = 1, M(x, y, z, t)
= 1 for all t > 0. Hence, x = y because x 6= z and y 6= z.

Lemma 3.3. Let (X, M,4) be a fuzzy 2-metric space, and let

lim
n→∞xn = x, lim

n→∞ yn = y, lim
n→∞un = u and lim

n→∞ vn = v.
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Then the followings are satisfied .
(1) lim inf M(xn, yn, a, t) ≥ M(x, y, a, t) for all a ∈ X and t ≥ 0.
(2) M(x, y, a, t + 0) ≥ lim supM(xn, yn, a, t) for all a ∈ X and t > 0.

Proof. (1) For all a ∈ X and t > 0, we have

M(xn, yn, a, t) ≥ 4(M(xn, x, a, t),M(xn, yn, x, t),M(yn, x, a, t))

≥ 4(M(xn, x, a, t),M(xn, x, yn, t),M(yn, y, a, t),M(x, y, a, t),

M(yn, x, y, t))

which implies

lim inf M(xn, yn, a, t) ≥ 4(1, 1, 1,M(x, y, a, t), 1) = M(x, y, a, t)

for all a ∈ X and t > 0.
(2) Let ε > 0 be given. For all a ∈ X and t > 0, we have

M(x, y, a, t + 2ε) ≥ 4(M(x, xn, a,
ε

2
),M(xn, y, a, t + ε), M(x, y, xn,

ε

2
))

≥ 4(M(xn, x, a,
ε

2
),M(xn, x, y,

ε

2
), M(xn, yn, a, t),M(xn, y, yn,

ε

2
),

M(yn, y, a,
ε

2
))

which implies M(x, y, a, t + 2ε) ≥ lim supM(xn, yn, a, t). Letting ε → 0
in the above inequality, we have M(x, y, a, t+0) ≥ lim supM(xn, yn, a, t).

Note that for all a ∈ X and t > 0, in general the inequality

M(x, y, a, t) ≥ lim supM(xn, yn, a, t)

is not true, because M(x, y, z, ·) is left continuous (in general, not right
continuous).

Lemma 3.4. Let (X,M,4) be a fuzzy 2-metric space and let A and
B be continuous self mappings of X and [A,B] be compatible. Let xn be
a sequence in X such that Axn → z and Bxn → z. Then ABxn → Bz.

Proof. Since A,B are continuous maps, ABxn → Az, BAxn → Bz
and so, M(ABxn, Az, a, t

3) → 1 and M(BAxn, Bz, a, t
3) → 1 for all

a ∈ X and t > 0.
Since the pair [A,B] is compatible, M(BAxn, ABxn, a, t

3) → 1 for all
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a ∈ X and t > 0. Thus,

M(ABxn, Bz, a, t)

≥ 4(M(ABxn, Bz, BAxn,
t

3
),M(ABxn, BAxn, a,

t

3
),

M(BAxn, Bz, a,
t

3
))

≥ 4(M(BAxn, Bz, ABxn,
t

3
),M(BAxn, ABxn, a,

t

3
),

M(BAxn, Bz, a,
t

3
))

→ 1

for all a ∈ X and t > 0.
Hence, ABxn → Bz.

Theorem 3.5. Let (X, M,4) be a complete fuzzy 2-metric space
with continuous t-norm 4 of H-type, and let S and T be continuous
self mappings of X. Then S and T have a unique common fixed point
in X if and only if there exist two self mappings A, B of X satisfying

(1) AX ⊂ TX, BX ⊂ SX,
(2) the pair [A,S] and [B, T ] are compatible,
(3) there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0,

M(Ax,By, a, qt)
≥ min{M(Sx, Ty, a, t),M(Ax, Sx, a, t),M(By, Ty, a, t),
M(Ax, Ty, a, t)}. (3.0)

Indeed, A,B, S and T have a unique common fixed point in X.

Proof. Suppose that S and T have a (unique) common fixed point,
say z ∈ X.
Define A : X → X by Ax = z for all x ∈ X, and B : X → X by
Bx = z for all x ∈ X.
Then one can see that (1)- (3) are satisfied.

Conversely, assume that there exist two self mappings A,B of X
satisfying conditions (1)- (3). From condition (1) we can construct two
sequences {xn} and {yn} of X such that y2n−1 = Tx2n−1 = Ax2n−2 and
y2n = Sx2n = Bx2n−1 for n = 1, 2, · · ·. Putting x = x2n and y = x2n+1
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in (3.0), we have that for all a ∈ X and t > 0

M(y2n+1, y2n+2, a, qt) = M(Ax2n, Bx2n+1, a, qt)

≥ min{M(Sx2n, Tx2n+1, a, t),M(Ax2n, Sx2n, a, t),

M(Bx2n+1, Tx2n+1, a, t),M(Ax2n, Tx2n+1, a, t)}
= min{M(y2n, y2n+1, a, qt),M(y2n+1, y2n+2, a, qt)}

which implies M(y2n+1, y2n+2, a, qt) ≥ M(y2n, y2n+1, a, t) by Lemma
3.1. Also, letting x = x2n+2 and y = x2n+1 in (3.0), we have that
M(y2n+2, y2n+3, a, qt) ≥ M(y2n+1, y2n+2, a, t) for all a ∈ X and t > 0.
In general, we obtain that for all a ∈ X, t > 0 and n = 1, 2, · · ·
M(yn, yn+1, a, qt) ≥ M(yn−1, yn, a, t). Thus, for all a ∈ X, t > 0 and
n = 1, 2, · · ·

M(yn, yn+1, a, t) ≥ M(y0, y1, a, t
qn ). (3.1)

We now show that {yn} is a Cauchy sequence in X.
Let ε ∈ (0, 1) be given. Since the t-norm 4 is of H-type, there exists
λ ∈ (0, 1) such that for all m, n ∈ N with m > n

42m−n
(1−λ) > 1−ε. (3.2)

Since lim
n→∞M(y0, y1, a,

t

qn
) = 1, there exists n0 ∈ N such that for all

a ∈ X and t > 0 with M(y0, y1, a, t
qn ) > 1− λ for all n ≥ n0. From

(3.1) we have that for all a ∈ X and t > 0, M(yn, yn+1, a, t) > 1−λ for
all n ≥ n0.
Let m > n ≥ n0. Then for all a ∈ X and t > 0 we have

M(ym, yn, a, t)

≥ 4(M(yn+1, yn, a, 3−1t),4(M(yn+1, yn, ym, 3−1t),

M(yn+1, ym, a, 3−1t)))

≥ 4(42((1− λ), M(yn+1, ym, a, 3−1t)). (3.3)

Since

M(yn+1, ym, a, 3−1t)

≥ 4(M(yn+2, yn+1, a, 3−2t),4(M(yn+2, yn+1, ym, 3−2t),

M(yn+2, ym, a, 3−2t))),

from (3.3) we get

M(ym, yn, a, t) ≥ 4(422
(1− λ),M(yn+2, ym, a, 3−2t).
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Inductively, we obtain

M(ym, yn, a, t) ≥ 4(42m−n
(1− λ),M(ym, ym, a, 3n−mt))

= 42m−n
(1− λ). (3.4)

From (3.2) and (3.4) we get for all a ∈ X and t > 0 M(ym, yn, a, t) >
1− ε for m > n ≥ n0. Thus {yn} is a Cauchy sequence.
It follows from completeness of X that there exists z ∈ X such that
lim

n→∞ yn = z. Hence lim
n→∞ y2n−1 = lim

n→∞Tx2n−1 = lim
n→∞Ax2n−2 = z and

lim
n→∞ y2n = lim

n→∞Sx2n = lim
n→∞Bx2n−1 = z.

From Lemma 3.4, ASx2n+1 → Sz and BTx2n+1 → Tz. (3.5)
Meanwhile, for all a ∈ X with a 6= Sz and a 6= Tz, and t > 0

M(ASx2n+1,BTx2n+1, a, qt)

≥ min{M(SSx2n+1, TTx2n+1, a, t),M(ASx2n+1, SSx2n+1, a, t),

M(BTx2n+1, TTx2n+1, a, t),M(ASx2n+1, TTx2n+1, a, t)}.

Taking limit as n →∞, and using (3.5), and Lemma 3.5, we have for
all a ∈ X with a 6= Sz and a 6= Tz, and t > 0

M(Sz, Tz, a, qt + 0)

≥ min{M(Sz, Tz, a, t),M(Sz, Sz, a, t),M(Tz, Tz, a, t),

M(Sz, Tz, a, t)}
≥ M(Sz, Tz, a, t).

By Lemma 3.2, we have Sz = Tz (3.6)
From (3.0) we get for all a ∈ X with a 6= Az and a 6= Tz, and t > 0

M(Az,BTx2n+1, a,qt)

≥ min{M(Sz, TTx2n+1, a, t),M(Az, Sz, a, t),

M(BTx2n+1, TTx2n+1, a, t),M(Az, TTx2n+1, a, t)}.

Taking limit as n →∞, and using (3.5), (3.6) and Lemma 3.3,

M(Az, Tz, a, qt + 0)

≥ min{M(Sz, Tz, a, t),M(Az, Sz, a, t),M(Tz, Tz, a, t),

M(Az, Tz, a, t)}
≥ M(Az, Tz, a, t).
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By Lemma 3.2, Az = Tz. (3.7)
And for all a ∈ X with a 6= Az and a 6= Bz, and t > 0

M(Az, Bz, a, qt)

≥min{M(Sz, Tz, a, t),M(Az, Sz, a, t),M(Bz, Tz, a, t),

M(Az, Tz, a, t)}
≥min{M(Tz, Tz, a, t),M(Tz, Tz, a, t),M(Bz,Az, a, t),

M(Tz, Tz, a, t)}
≥M(Az, Bz, a, t).

By Lemma 3.2, Az = Bz. (3.8)
It follows that Az = Bz = Sz = Tz.

For all a ∈ X with a 6= Bz and a 6= z, and t > 0

M(Ax2n, Bz, a,qt)

≥ min{M(Sx2n, T z, a, t),M(Ax2n, Sx2n, a, t),

M(Bz, Tz, a, t),M(Ax2n, T z, a, t)}.
Taking limit as n → ∞, and using (3.5), and Lemma 3.3, we have for
all a ∈ X with a 6= Bz and a 6= z, and t > 0

M(z,Bz, a, qt + 0)

≥ min{M(z, Tz, a, t),M(z, z, a, t),M(Bz, Bz, a, t),M(z, Tz, a, t)}
≥ M(z, Tz, a, t) ≥ M(z,Bz, a, t),

and so we have M(z, Bz, a, qt) ≥ M(z, Bz, a, t), and hence Bz = z.
Thus z = Az = Bz = Sz = Tz, and so z is a common fixed point of
A,B, S and T.
For uniqueness, let w be another common fixed point of A,B, S and
T.
Then, for all a ∈ X with a 6= z and a 6= w, and t > 0,

M(z, w, a, qt) = M(Az, Bw, a, qt)

≥ min{M(Sz, Tw, a, t),M(Az, Sz, a, t),M(Bw, Tw, a, t),

M(Az, Tw, a, t)}
≥ min{M(z, w, a, t),M(z, z, a, t),M(w,w, a, t),M(z, w, a, t)}
≥ M(z, w, a, t)

which implies that M(z, w, a, qt) ≥ M(z, w, a, t) and hence z = w.
This complete the proof of Theorem.

In Theorem 3.5, if we have A = B then we obtain the following result.
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Corollary 3.6. Let (X, M,4) be a complete fuzzy 2-metric space
with continuous t-norm 4 of H-type, and let S and T be continuous
self mappings of X.
Then S and T have a unique common fixed point in X if and only if
there exists self mapping A of X satisfying

(1) AX ⊂ TX ∩ SX,
(2) the pair [A,S] and [A, T ] are compatible,
(3) there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0,

M(Ax,Ay, a, qt)
≥ min{M(Sx, Ty, a, t),M(Ax, Sx, a, t),M(Ay, Ty, a, t),
M(Ax, Ty, a, t)}.

Indeed, A,S and T have a unique common fixed point in X.

We modify theorem 2 of [11] as the following.

Corollary 3.7. (Sharma[11]) Let (X, M,4) be a complete fuzzy
2-metric space with continuous t-norm 4 of H-type, and let S and T
be continuous self mappings of X.
Then S and T have a unique common fixed point in X if and only if
there exists self mapping A of X satisfying

(1) AX ⊂ TX ∩ SX,
(2) A commute with S and T ,
(3) there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0,

M(Ax,Ay, a, qt)
≥ min{M(Sx, Ty, a, t),M(Ax, Sx, a, t),M(Ay, Ty, a, t)}.

Indeed, A,S and T have a unique common fixed point in X.

In Corollary 3.7, if we have S = T = id then we obtain the following
result, where id is the identity map on X.

Corollary 3.8. Let (X, M,4) be a complete fuzzy 2-metric space
with continuous t-norm 4 of H-type, and let A be a self mapping of X
satisfying
there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0,

M(Ax,Ay, a, qt)

≥ min{M(Sx, Ty, a, t),M(Ax, Sx, a, t),M(Ay, Ty, a, t)}.
Then A has a unique common fixed point in X.

The following result is fuzzy 2-metric space version of Banach con-
traction principle.
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Corollary 3.9. Let (X, M,4) be a complete fuzzy 2-metric space
with continuous t-norm 4 of H-type, and let A be a self mapping of X
satisfying
there exists q ∈ (0, 1) such that for every x, y, a ∈ X and t > 0,
M(Ax,Ay, a, qt) ≥ M(x, y, a, t).
Then A has a unique common fixed point in X.

Rao et al. [9] point out that there are some errors in the paper of
Cho [2]. They claimed that the conditions of fixed point theorems given
in [2] are incorrect “ in view of the example even when S = T = id,
where id is the identity map”. But the given examples in [9] are not
satisfied the conditions of the theorems of Cho [2]. So, Rao’s claim in
[9] is inappropriate.

Acknowledgments

I would like to express my deepest gratitude to professor Seong Hoon
Cho, Hanseo University, for his hospitality.

References

[1] Y. J. Cho, Fixed points in fuzzy metric space, J. Fuzzy Math. 5 (1997), no. 4,
949–962.

[2] S. H. Cho, On common fixed points in fuzzy metric spaces, Intrnational Math-
ematical Forum 1 (2006), no. 10, 471–479.

[3] S. Gähler, 2-metrische Raume and ihre topologische structure, Math. Nachr.
26 (1983), 115–148.

[4] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets
and Systems 64 (1994), 395–399.

[5] M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems 27
(1988), 385–389.

[6] O. Hadzic, E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer
Academic Publishers, Dordrecht, 2001.

[7] E. P. Klement, R. Mesiar and E. Pap, Triangular Norm, Kluwer Academic
Publishers, Trens 8.

[8] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernet-
ica 11 (1975), 326–334.

[9] K. P. R. Rao, G. N. V. Kishore, T. Ranga Rao, Weakly f-compatible pair
(f, g) and common fixed point theorems in fuzzy metric spaces, Mathematical
Sciences 2 (2008), no. 3, 293–308.

[10] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960),
313–334.

[11] S. Sharma, On fuzzy metric spaces, Southeast Asian Bull. of Math. 26 (2002),
no. 1, 133–145.



656 Jinkyu Han

[12] K. Iseki, P. L. Sharma, B. K. Sharma, Contractive type mapping on 2-metric
space, Math. Japonica 21 (1976), 67–70.

[13] L. A. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965), 338–353.

*
Department of Mathematics Education
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail : jkhan@mokwon.ac.kr


