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A p-TH ROOT OF A MINKOWSKI UNIT

Jangheon Oh*

Abstract. The purpose of this paper is to show that there exists
a unit whose p-th root generates the first layer of anti-cyclotomic
Zp-extension of certain imaginary quadratic number fields.

1. Introduction

Let k be an imaginary quadratic field, and L an abelian extension
of k. L is called an anti-cyclotomic extension of k if it is Galois over
Q, and Gal(k/Q) acts on Gal(L/k) by −1. For each prime number p,
the compositum K of all Zp-extensions over k becomes a Zp

2-extension,
and K is the compositum of the cyclotomic Zp-extension and the anti-
cyclotomic Zp-extension of k. In the paper[4], using Kummer theory
and class field theory, we constructed for odd primes the first layer ka

1 of
the anti-cyclotomic Zp-extension of an imaginary quadratic field whose
class number is not divisible by p under the assumption that a unit ε
constructed in the paper [4](see Theorem 1 of this paper) is not a p-
power of a unit. In this paper, we will show that there always exists
such a unit ε that is not a p-power of a unit.

2. Main Theorem

We begin this section by explaining how to construct a cyclic exten-
sion Mp of prime degree p of an imaginary quadratic field k, which is
unramified outside p over k and Gal(Mp/Q) ' Dp, the dihedral group of
order 2p. From now on, we let k = Q(

√−d) be an imaginary quadratic
field with k ∩ Q(ζp) = Q and let σ, τ with σ(ζp) = ζp

t be generators of
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Gal(kz/k), Gal(kz/Q(ζp)), respectively, where ζp a primitive p-th root
of unity and kz = k(ζp). Then we have the following theorem which is
the main theorem refinement of [4, Theorem 1].

Theorem 2.1. (See [6, Theorem 1]) Let X be a vector space over
a finite field Fp with a basis {x1, · · · , xp−1} and A be a linear map
such that Axi = xi+1 for i = 1, · · · , p − 2 and Axp−1 = x1. Let x =∑

i aixi be an eigenvector of A corresponding to an eigenvalue t satisfying

σ(ζp) = ζp
t. Let k = Q(

√−d) be an imaginary quadratic field such
that k ∩ Q(ζp) = Q. Assume that ε = τ(ε)ε−1 is not a p-power of a

unit in kz, where ε =
∏

i(α)aiσ
i−1

for some unit α ∈ kz. Then kz( p
√

ε)
contains a unique cyclic extension Mp of prime degree p of k, which
is unramified outside p over k and Gal(Mp/Q) ' Dp, and Mp = k(η)
where η = Trkz( p√ε)/Mp

( p
√

ε).

Before proving our main theorem, we need a lemma.

Lemma 2.2. (See [7, Lemma 5.27]) Let K/Q be a real finite Galois
extension then let σ1, · · · , σr+1 be the elements of Gal(K/Q). There
exists a unit α of K such that the set of units {ασi |1 ≤ i ≤ r} is
multiplicatively independent, hence generates a subgroup of finite index
in the full group of units EK(such a unit is called a Minkowski unit).

Remark 2.1. By above lemma, we see that EK ⊗Q ' Q[Gal(K/Q)]
/(σ1 + · · ·+σr+1), therefore EK/EK

p ' Fp[Gal(K/Q)]/(σ1 + · · ·+σr+1)
when p 6| [K : Q].

Note that the characteristic polynomial of the map A in Theorem 1
is xp−1 − 1. Therefore the eigenvector for any nonzero t in Fp always
exists. Now we will prove our main theorem that ε in Theorem 1 is not
a p-power of a unit in kz. Actually, it is enough to show that the unit
ε is not a p-power of a unit in M+ which is the maximal real subfield
of kz because of the well-known fact that [Ekz : WM+] = 1 or 2. Here
W is the group of roots of unity in kz. Let notations be the same as in
Theorem 1. By abuse of notation, let σ, τ denote by the extensions of
σ, τ to kz with σ|Q(

√−d)=identity and τ |Q(ζp)=identity.

Theorem 2.3. Let p > 3 be a prime. Then the unit ε in Theorem 1
is not a p-power of a unit in kz if α is a Minkowski unit in M+.

Proof. First we prove the theorem in the case of p ≡ 1 modulo 4. The
unique quadratic subfield of Q(ζp) is Q(

√
p). It follows that the maximal

real subfield M+ of kz is

Q(ζp + ζp
−1,

√
−d(ζp − ζp

−1)).
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Let x =
∑

i aixi be an eigenvector of A corresponding to an eigenvalue
t satisfying σ(ζp) = ζp

t and t
p−1
2 ≡ −1 modulo p. Note that

σ
p−1
2 (ζp − ζp

−1) = ζp
t

p−1
2 − ζp

−t
p−1
2 = ζp

−1 − ζp

σ
p−1
2 (
√
−d) = (

√
−d)

τ(ζp − ζp
−1) = (ζp − ζp

−1), τ(
√
−d) = −(

√
−d).

So σ
p−1
2 ((

√−d)(ζp − ζp
−1)) = −(

√−d)(ζp − ζp
−1) and τ((

√−d)(ζp −
ζp
−1)) = −(

√−d)(ζp − ζp
−1). Therefore σ

p−1
2 , τ 6∈ H = Gal(kz/M

+),
which implies that σ|M+ is a generator of Gal(M+/Q) and τ |M+ =
(σ|M+)

p−1
2 . Now we choose α as a Minkowski unit in M+. Then we have

ε = (
∏

i

αaiσ
i−1

)(τ−1)

= (
∏

i

αai(σ|M+)i−1

)((σ|M+ )
p−1
2 −1)

= (
∏

i

αai(σ|M+)i−1

)(t
p−1
2 −1)

= ε−2up,

where u is a unit in M+. This completes the proof by the Remark 1
above. Next we will prove the theorem in the case of p ≡ 3 modulo
4. Then the maximal real subfield M+of kz is Q(ζp + ζp

−1,
√

dp) since
Q(
√−p) is the unique quadratic subfield of Q(ζp). It is clear that

σ
p−1
2 (

√
dp) = −

√
dp, σ

p−1
2 (ζp + ζp

−1) = ζp + ζp
−1

τ(
√

dp) = −
√

dp, τ(ζp + ζp
−1) = ζp + ζp

−1.

Therefore the order of σ|M+ is p − 1 and σ|M+

p−1
2 = τ |M+ . Now we

easily check as in the case of p ≡ 1 modulo 4 that ε = ε−2up, where u is
a unit in M+, which implies that ε is not a p-power of a unit in kz by
Remark 1.

Theorem 2.4. Let p be an odd prime which is greater than 3, d a
square free positive integer and k = Q(

√−d) an imaginary quadratic
field such that p 6| hk. Then

ka
1 = k(η)

where η is as in Theorem 1.
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Proof. Let F be the maximal abelian p-extension of k unramified
outside p. Then class field theory (see [7, Corollary 13.6]) shows that

Gal(F/k) ' (
∏

p|p
U1,p),

where U1,p is the local units of k which is congruent to 1 modp. Hence F,
which is equal to the compositum K of all Zp-extension of k in this case,
contains a unique Dp-extension ka

1 of Q (cf.[4, Lemma2]). Therefore
Mp = ka

1 = k(η) since Mp and ka
1 are Dp-extensions of Q contained in

F.

Remark 2.2. For p = 2, 3, the explicit construction of the first layer
of the anti-cyclotomic Zp-extension of k is given in [2, 3]. For Kummer
extension of a number field which does not contain roots of unity, see [1].
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