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AN ALGORITHM FOR CHECKING EXTREMALITY OF
ENTANGLED STATES WITH POSITIVE PARTIAL

TRANSPOSES

Kil-Chan Ha*

Abstract. We characterize extreme rays of the cone T of all pos-
itive semi-definite block matrices whose partial transposes are also
positive semi-definite. We also construct an algorithm checking
whether a given PPTES generates an extreme ray in the cone T
or not. Using this algorithm, we give an example of 4 ⊗ 4 PPT
entangle state of the type (5, 5), which generates extreme ray of the
cone T

1. Introduction

Quantum entanglement has been investigated during the last few
decades in connection with the quantum information theory and quan-
tum communication theory. The characterization and classification of
the entanglement are a central problem in the field of quantum informa-
tion. In particular it is of primary importance to test whether a given
quantum state is separable or entangled.

A density matrix A in (Mn ⊗Mm)+ is said to be entangled if it does
not belong to M+

n ⊗ M+
m, where M+

n denotes the cone of all positive
semi-definite n × n matrices over the complex fields. A density matrix
is said to be separable if it belongs to M+

n ⊗M+
m. Note that a density

matrix defines a state on the matrix algebra by the Schur or Hadamard
product.

One of the criteria for separability was given by Choi [1] and Peres
[14], which says that the partial transpose of every separable state is
positive semi-definite. The partial transpose or block transpose Aτ of
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A ∈ Mn ⊗Mm is define by

(
m∑

i,j=1

aij ⊗ eij)τ =
m∑

i,j=1

aj i ⊗ eij .

This necessary condition for separability is called the positive partial
transpose (PPT) criterion for separability. It was shown by Horodecki
et al. [9] that PPT criterion is also sufficient condition for separability
in the cases of M2⊗M2 and M2⊗M3. Existence of PPT entangled 3⊗3
state was known already in terms of cones by Choi [1]. On physical
ground, first examples of entangled states that are PPT were found by
Horodecki [10], following Woronowicz construction [17]. See the review
paper [11] and references therein for other separability criteria.

Still more efforts have been done to find various type of PPT entan-
gled states (PPTES). PPTES may be classified by their range dimen-
sions as was studied in [16]. A PPTES A is said to be of the type (s, t)
if the range dimension of A is s, and the range dimension of Aτ is t.
There are some examples of (4, 4), (5, 5), (6, 5), (7, 5), (8, 5), (6, 6) and
(6, 7) PPTES in the literature. See the references [2, 6, 7] for example.

In this note, we denote by T the convex cone of all positive semi-
definite block matrices whose partial transposes are also positive semi-
definite, that is to say

T = {A ∈ (Mn ⊗Mm)+ : Aτ ∈ (Mn ⊗Mm)+}.
Note that the convex set of all n ⊗ m entangled states with positive
partial transpose is of the form

{A ∈ T : Tr(A) = 1}
where Tr denotes the usual trace of a matrix in Mn⊗Mm = Mn×m. To
understand this convex cone T, the author with Kye [5] characterized
the face of T in terms of pairs of subspaces of the space Mm×n of all
m × n matrices. Recall that 1-dimensional face of a given convex cone
is extreme ray. We say that a PPTES is extremal if it generates an
extreme ray in the convex cone T. It was shown that some PPTES of
type (4, 4), (5, 5) and (6, 6) in [2, 6, 7] are extremal by a direct argument
[4, 8, 12]. Moreover, Leinaas et al. [13] formulated a criterion for finding
extreme points of the convex set of density matrices with positive partial
transpose. They reduced the question of extremality to the problem of
solving a system of linear equations.

The purpose of this note is to construct a practical algorithm for
checking whether a given PPTES is extremal in the convex cone T or
not. We explain very briefly in the next section the facial structures
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of the cone T, and investigate what kinds of faces of T are extreme
rays using our previous results [5] on the facial structure of T. In the
final section, we construct an algorithm for checking the extremality of
PPTES and discuss an implementation of this algorithm.

Throughout this paper, we do not use bra-ket notations. Every vector
will be considered as a column vector. If x ∈ Cm and y ∈ Cn, then x
will be considered as an m × 1 matrix, and y∗ will be considered as a
1 × n matrix, and so xy∗ is an m × n rank one matrix whose range is
generated by x and whose kernel is orthogonal to y. We also denote by
{ei} the usual orthonomal basis of Cn, and {eij} the usual matrix units
of Mn. For natural numbers m and n, m ∧ n means the minimum of m
and n.

2. Characterization of extremal PPTES

We start with a brief review of the facial structures for the convex
cone T [5]. We identify a matrix z ∈ Mm×n and a vector z̃ ∈ Cn ⊗ Cm

as follows:
For an m× n matrix z = [zik] ∈ Mm×n, we define

zi =
n∑

k=1

zikek ∈ Cn, i = 1, 2, · · · ,m,

z̃ =
m∑

i=1

zi ⊗ ei ∈ Cn ⊗ Cm.

Then z 7→ z̃ defines and inner product isomorphism from Mm×n onto
Cn ⊗ Cm. We also define the convex cones

Vs = conv{z̃z̃∗ ∈ Mn ⊗Mm | rank of z ≤ s}
Vs = conv{(z̃z̃∗)τ ∈ Mn ⊗Mm | rank of z ≤ s}

for s = 1, 2, · · · ,m∧n, where convX means the convex set generated by
X.

It is clear that Vm∧n coincides with the cone (Mn ⊗ Mm)+ of all
positive semi-definite mn×mn matrices and so we get

T = Vm∧n ∩ Vm∧n.

It is well known that every face of Vm∧n and Vm∧n is of the form

(2.1)
ΨD = {A ∈ (Mn ⊗Mm)+ : RA ⊂ D̃},
ΨE = {A ∈ Mn ⊗Mm : Aτ ∈ ΨE}
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respectively, where RA denotes the range space of A and D̃ = {z̃ : z ∈
D} ⊂ Cn ⊗ Cm for the subspace D ⊂ Mm×n. Note that we have

intΨD = {A ∈ ΨD : RA = D̃},
intΨE = {A ∈ ΨE : RAτ = Ẽ}

(2.2)

where intC denotes the relative interior of the convex set C with respect
to the hyperplane spanned by C.

Every pair (D, E) of subspaces of Mm×n gives rise to a face

(2.3) τ(D, E) := ΨD ∩ΨE

of the convex cone T, and every face of T is of the form (2.3) for a unique
pair (D,E) of subspaces under the condition

(2.4) intτ(D, E) ⊂ intΨD ∩ intΨE

as was explained in [5].
In this section we will characterize extreme rays of the convex cone

T. Let (Mn⊗Mm)h be the real Hilbert space of all nm×nm hermitian
matrices in Mn ⊗Mm with the inner product

〈X, Y 〉 = Tr(Y Xt)

for X, Y ∈ (Mn ⊗Mm)h. For a pair (D, E) of subspaces of Mm×n, we
define linear maps φ

D̃
and φ

Ẽ
from (Mn ⊗Mm)h to (Mn ⊗Mm)h by

φ
D̃

(X) =P
D̃

XP
D̃
−X

φ
Ẽ
(X) =(P

Ẽ
XτP

Ẽ
)τ −X

where P
D̃

denotes the orthogonal projection onto D̃ ⊂ Cn ⊗ Cm. Note
that the orthogonal projection P

D̃
belongs to (Mn⊗Mm)h and the map

X 7→ Xτ is an isomorphism of (Mn ⊗Mm)h preserving T.
Let τ(D,E) = ΨD∩ΨE be the face corresponding to the pair (D, E).

Then for any A ∈ τ(D,E), we have

P
D̃

AP
D̃

= A, P
Ẽ
AτP

Ẽ
= Aτ

since RA ⊂ D̃ and RAτ ⊂ Ẽ by (2.1). Therefore we see that

(2.5) τ(D, E) ⊂ Ker(φ
D̃

) ∩Ker(φ
Ẽ
)

where Ker(φ) denotes the kernel space of a linear map φ. Now, we
characterize extreme rays of T. Recall that every face of T is of the form
τ(D, E) for a unique pair (D, E) of subspaces under the condition (2.4).

Theorem 2.1. For a face τ(D, E) of T, the following are equivalent:

(i) The face τ(D, E) is an extreme ray in the cone T.
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(ii) dim
(
Ker(φ

D̃
) ∩Ker(φ

Ẽ
)
)

= 1

Proof. If Ker(φ
D̃

) ∩ Ker(φ
Ẽ
) is a 1-dimensional subspace of (Mn ⊗

Mm)h, then the face τ(D, E) is 1-dimensional, that is, τ(D, E) is an
extreme ray of T by the inclusion (2.5).

Conversely, we assume (i), and choose an interior point A of τ(D, E).
Then we see that

(2.6) RA = D̃, RAτ = Ẽ

by the relations (2.4) and (2.2). If dim
(
Ker(φ

D̃
) ∩Ker(φ

Ẽ
)
) ≥ 2 then

there exist a hermitian matrix B ∈ Ker(φ
D̃

) ∩ Ker(φ
Ẽ
), which is not a

scalar multiple of A. We may assume that

Tr(A) = Tr(B) = 1.

Since both A and B bolong to Ker(φ
D̃

)∩Ker(φ
Ẽ
), the matrix A′ = B−A

belong to Ker(φ
D̃

) ∩Ker(φ
Ẽ
). Furthermore, the matrix A′ is a nonzero

hermitian matrix and Tr(A′) = 0. Therefore A′ has both positive and
negative eigenvalues. Now we define a hermitian matrix

(2.7) Ã(t) = A + tA′

for real t. Since A′ has both positive and negative eigenvalues, so has
Ã(t) for sufficiently large |t|. If v ∈ Cnm is an eigenvector of A corre-
sponding to the eigenvalue 0 then PAv = 0 for the orthogonal projection
PA onto RA, and we see that

A′v = P
D̃

A′P
D̃

v = PAA′PAv = 0

because A′ belong to Ker(φ
D̃

) ∩ Ker(φ
Ẽ
) ⊂ Ker(φ

D̃
) and P

D̃
= PA

for an interior point A of τ(D,E) by the relations (2.6). Therefore
Ã(t)v = 0 for all t. This means that only positive eigenvalues of A
can be changed when tA′ is added to A. Since positive eigenvalues of
Ã(t) change continuously with t, they remain positive for t in an open
interval (t1, t2) containing t = 0. Consequently we can conclude that
Ã(t) is positive semi-definite for t1 ≤ t ≤ t2.

Since A′ belong to Ker(φ
D̃

) ∩Ker(φ
Ẽ
) ⊂ Ker(φ

Ẽ
), we have

A′τ = P
Ẽ
A′τP

Ẽ
.

If w ∈ Cnm is an eigenvector of Aτ corresponding to the eigenvalue 0
then P

Ẽ
w = 0 for the orthogonal projection P

Ẽ
because of Ẽ = RAτ in

(2.6), hence we see that

A′τw = P
Ẽ
A′τP

Ẽ
w = 0.
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Therefore (Ã(t))τw = 0 for all t by (2.7). By the same argument as the
case of Ã(t), we can conclude that there exist a t3 < 0 and a t4 > 0 such
that (Ã(t))τ is positive semi-definite for t3 ≤ t ≤ t4.

Consequently we conclude that for max{t1, t3} ≤ t ≤ min{t2, t4}
Ã(t) ∈ T.

Since max{t1, t3} < 0 < min{t2, t4} and Ã(0) = A, A is not extremal in
the cone T. This completes the proof.

For a PPT entangled state A, we can find the pair (D,E) of subspaces
of Mn×m such that D̃ = RA and Ẽ = RAτ . Then A generates an
extreme ray if and only if the face τ(D, E) is an extreme ray. Therefore
we have the following.

Corollary 2.2. For a PPT entangled state A, the following are
equivalent:

(i) A generates an extreme ray in T.

(ii) dim
(
Ker(φ

D̃
) ∩Ker(φ

Ẽ
)
)

= 1 where D̃ = RA and Ẽ = RAτ .

3. An algorithm for checking the extremality of PPTES

In this section, we give a practical algorithm that tries to check the
extremality of an n⊗m PPTES. Let A ∈ T ⊂ (Mn⊗Mm)+ be a PPTES
of type (s, t). Then there is a unique face τ(D, E) containing A as an
interior point, so we have D̃ = RA and Ẽ = RAτ . By the Corollary 2.2,
we can construct the algorithm as follows.

step1: Compute the block transpose Aτ of A.
step2: Find the orthogonal projection P

D̃
onto RA. This process may be

broken up into two steps:
2-1) Apply Gram-Schmidt process to {Ae1, · · · , Aenm} to get an or-

thonormal basis {p1, · · · , ps} where {ei : 1 ≤ i ≤ nm} is the usual
basis of Cn ⊗ Cm.

2-2) Compute the orthogonal projection P
D̃

=
∑s

i=1 pip
∗
i .

step3: Find the orthogonal projection P
Ẽ

onto RAτ . This process may
be broken up into two steps:

3-1) Apply Gram-Schmidt process to {Aτe1, · · · , Aτenm} to get an or-
thonormal basis {q1, · · · , qt} where {ei : 1 ≤ i ≤ nm} is the usual
basis of Cn ⊗ Cm.

3-2) Compute the orthogonal projection P
Ẽ

=
∑t

i=1 qiq
∗
i .
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step4: Compute the (nm)2 × (nm)2 matrices which represent the linear
maps φ

D̃
and φ

Ẽ
respectively.

step5: Compute the basis B of Ker(φ
D̃

) ∩Ker(φ
Ẽ
).

step6: if the number of B=1 then
print “A generates an extreme ray”

else
print “A does not generate an extreme ray”

end if
We implemented this algorithm using the Maple’s programming lan-

guage. In step1 of the above algorithm, we made a procedure which
compute the matrix Aτ ∈ Mn⊗Mm for a given PPTES A ∈ Mn⊗Mm,
and used the Maple function GramSchmidt in step2 and step3. In step4,
we considered a matrix in Mn ⊗ Mm = Mm×n as a vector in C(nm)2 ,
so we could compute the (nm)2 × (nm)2 matrices which represent the
linear maps φ

D̃
and φ

Ẽ
. Finally we used Maple functions NullSpace and

IntersectionBasis to compute the basis of Ker(φ
D̃

) ∩Ker(φ
Ẽ
) in step5.

We confirmed all PPT entangled states of type (4, 4), (5, 5) and (6, 6)
in [2, 6, 7] generate extreme rays in T using Maple program which im-
plements our algorithm. As another application of our program, we
checked that the PPT entangled state A ∈ M4 ⊗M4 in [3] is extremal.
The author [3] constructed this PPTES to show that the Robertson map
[15] is an atomic map.

For the reader’s convenience, we restate this PPTES A. Define zi ∈
C4 ⊗ C4 and A ∈ M4 ⊗M4 by

z1 = e1 ⊗ e1, z2 = e1 ⊗ e3, z3 = e2 ⊗ e1, z4 = e2 ⊗ e4,

z5 = e3 ⊗ e1, z6 = e3 ⊗ e3, z7 = e3 ⊗ e4,

A := (z1 − z6)(z1 − z6)∗ + (z4 + z5)(z4 + z5)∗ + z2z
∗
2 + z3z

∗
3 + z7z

∗
7 .

Then we see that

Aτ = (z5 − z2)(z5 − z2)∗ + (z3 + z7)(z3 + z7)∗ + z1z
∗
1 + z4z

∗
4 + z6z

∗
6 ,

and so Aτ is positive semi-definite, that is, A ∈ T. Consequently, we get
an example of PPTES of the type (5, 5), which generates an extreme ray
in T ⊂ M4 ⊗M4.
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