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ON HILBERT 2-CLASS FIELD TOWERS
OF REAL QUADRATIC FUNCTION FIELDS

Hwanyup Jung*

Abstract. In this paper we prove that real quadratic function
field F over Fq(T ) has infinite 2-class field tower if the 4-rank of
narrow ideal class group of F is equal to or greater than 4 when
q ≡ 3 mod 4.

1. Introduction and statement of main result

Let k = Fq(T ) be the rational function field over the finite field Fq

of q elements and A = Fq[T ]. Let ∞ be the prime of k associated to
(1/T ). For a finite separable extension F of k, let OF be the integral
closure of A in F and HF be the Hilbert class field of F with respect to
OF ([5]). Let ` be a prime number. Let F

(`)
1 be the Hilbert `-class field

of F
(`)
0 = F (i.e., F

(`)
1 is the maximal `-extension of F inside HF ) and

inductively, F
(`)
n+1 be the Hilbert `-class field of F

(`)
n for n ≥ 1. Then we

obtain a sequence of fields F
(`)
0 = F ⊂ F

(`)
1 ⊂ · · · ⊂ F

(`)
n ⊂ · · · , which

is called the Hilbert `-class field tower of F . We say that the Hilbert
`-class field tower of F is infinite if F

(`)
n 6= F

(`)
n+1 for each n ≥ 0. For

any multiplicative abelian group A, write r`(A) = dimF`
(A/A`), which

is called the the `-rank of A. In [6], Schoof has proved that the Hilbert
`-class field tower of F is infinite if

(1.1) r`(C(F )) ≥ 2 + 2
√

r`(O∗F ) + 1,
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where C(F ) and O∗F are the ideal class group and the group of units
of OF , respectively. This is a function field analog of the theorem of
Golod-Shafarevich.

Assume that q is odd. Throughout the paper, by a real quadratic
function field, we always mean a quadratic extension F of k in which ∞
splits. Any real quadratic function field F can be written uniquely as
F = k(

√
D), where D ∈ A is a nonconstant square-free monic polyno-

mial of even degree. In this paper, we study the infiniteness of Hilbert
2-class field tower of such a real quadratic function field F . Since
O∗F ∼= F∗q × Z, r2(O∗F ) = 2, so the Hilbert 2-class field tower of F is
infinite if r2(C(F )) ≥ 6 by Schoof’s theorem. Let C+(F ) be the nar-
row ideal class group of OF (cf. §2.1). Write r4(C+(F )) = r2(C+(F )2),
which is called the 4-rank of C+(F ). The main result of this paper is
the following theorem.

Theorem 1.1. Assume that q ≡ 3 mod 4. Let F be a real quadratic
function field over k. If r4(C+(F )) ≥ 4, then F has infinite Hilbert
2-class field tower.

In classical case, Lemmermeyer [3] has proved a similar result for the
real quadratic number field F . Our method is elementary since we only
use the Rédei matrix M+

F associated to F and this method also works
for real quadratic number field case.

2. Preliminaries

2.1. Narrow ideal class group C+(F )

Let k∞ = Fq((1/T )) be the completion of k at ∞. Let sgn : k∗∞ →
F∗q be the sign function satisfying sgn(1/T ) = 1 and define s(x) =

sgn(x)
q−1
2 for any x ∈ k∗∞. Let F be a real quadratic function field over

k. Let ∞1 and ∞2 be primes of F lying above ∞. Define a homomor-
phism

s : F ∗ → {±1} × {±1}, x 7→ (s1(x), s2(x)),
where si(x) = s(ηi(x)) and ηi is the embedding of F into k∞ associated
to ∞i for i = 1, 2. An element x ∈ F ∗ is said to be positive if s(x) =
(1, 1). Put F+ = Ker(s), which is the subgroup of F ∗ consisting of all
positive elements of F ∗. Let I(F ) be the group of fractional ideals of
OF and P+(F ) be the subgroup of I(F ) consisting of principal ideals
generated by an element of F+. The narrow ideal class group C+(F ) of
OF is defined as C+(F ) = I(F )/P+(F ).
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2.2. 4-rank of C+(F ) and Rédei matrix M+
F

Consider a real quadratic function field F = k(
√

D) with D = P1 · · ·Pt,
where Pi is a monic irreducible polynomial in A for 1 ≤ i ≤ t. By
genus theory, r2(C+(F )) = t − 1. Let s = s(D) denote the number of
the Pi with odd degree. Since deg(D) is even, s is even. From now
on we always assume that 2 - deg(Pi) for 1 ≤ i ≤ s and 2| deg(Pi) for
s+1 ≤ i ≤ t. For 1 ≤ i 6= j ≤ t, let eij ∈ F2 be defined by (−1)eij = ( P̄i

Pj
),

where P̄i = (−1)deg(Pi)Pi and eii is defined to satisfy
∑t

i=1 eij = 0. Let
M ′

F = (eij)1≤i,j≤t. We associate a matrix M+
F to F defined as follows: If

there is an ideal a of F such that a1−σ = αOF with NF/k(α) ∈ F∗2q \F∗4q ,
where σ is the generator of Gal(F/k), then M+

F is defined as the t×(t+1)
matrix obtained from M ′

F by adjoining (e1A e2A · · · etA)t to the last
column, where A ∈ A is the monic polynomial with NF/k(a) = (A) and
eiA ∈ F2 is defined to satisfy (−1)eiA = (Pi

A ), and M+
F = M ′

F other-
wise. We remark that if q ≡ 3 mod 4, we always have M+

F = M ′
F . Then

r4(C+(F )) satisfies the following equality ([1])

(2.1) r4(C+(F )) = t− 1− rank(M+
F ).

2.3. Martinet’s inequality

Let E and K be finite (geometric) separable extensions of k such that
E/K is a cyclic extension of degree ` with ∆ = Gal(E/K), where ` is
a prime number not dividing q. Then H0(∆,O∗E) and H1(∆,O∗E) are
elementary abelian `-groups with

|H0(∆,O∗E)|
|H1(∆,O∗E)| = `−1

∏

p∞∈S∞(K)

|∆p∞ |,

where S∞(K) is the set of primes of K lying above ∞ and ∆p∞ denotes
the decomposition group of p∞ in ∆. Note that ∆p∞ = ∆ if p∞ ramifies
or inerts in E and ∆p∞ = {1} otherwise. Following the arguments in [4,
§2], we get the following.

Proposition 2.1. Let E and K be finite (geometric) separable ex-
tensions of k such that E/K is a cyclic extension of degree `, where `
is a prime number not dividing q. Let γE/K be the number of prime
ideals of OK that ramify in E and ρE/K be the number of primes p∞ in
S∞(K) that ramify or inert in E. If γE/K satisfies the inequality

(2.2) γE/K ≥ |S∞(K)| − ρE/K + 3 + 2
√

`|S∞(K)|+ (1− `)ρE/K + 1,
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then the Hilbert `-class field tower of E is infinite.

The inequality (2.2) is called the Martinet’s inequality for E/K. Let
F be a real quadratic function field over k. We remark that if there
exists an extension E of F which has infinite Hilbert 2-class field tower
and F ⊂ E ⊂ F

(2)
1 , then F also has infinite Hilbert 2-class field tower.

Corollary 2.2. Let F = k(
√

D) be a real quadratic function field
over k. If D has a nonconstant monic divisor D1 of even degree satisfying
(D1

Qj
) = 1 for monic irreducible divisors Qj (1 ≤ j ≤ 5) of D, then F has

infinite Hilbert 2-class field tower.

Proof. Put K = k(
√

D1), which is a real quadratic extension of k in
which Q1, Q2, Q3, Q4 and Q5 split. Let E = KF . Applying Proposition
2.1 on E/K with γE/K = 10 and (|S∞(K)|, ρE/K) = (2, 0), we see that
E has infinite Hilbert 2-class field tower, so F also has infinite Hilbert
2-class field tower.

Corollary 2.3. Let F = k(
√

D) be a real quadratic function field
over k. If D has a two distinct nonconstant monic divisors D1 and D2 of
even degrees satisfying (D1

Qj
) = (D2

Qj
) = 1 for monic irreducible divisors

Qj (1 ≤ j ≤ 4) of D, then F has infinite Hilbert 2-class field tower.

Proof. Put K = k(
√

D1,
√

D2), which is a real biquadratic extension
of k in which Q1, Q2, Q3 and Q4 split completely. Let E = KF . Ap-
plying Proposition 2.1 on E/K with γE/K ≥ 16 and (|S∞(K)|, ρE/K) =
(4, 0), we see that E has infinite Hilbert 2-class field tower, so F also
has infinite Hilbert 2-class field tower.

Corollary 2.4. Let F = k(
√

D) be a real quadratic function field
over k. If D has a two distinct nonconstant monic divisors D1 and D2 of
even degrees satisfying (D1

Qj
) = (D2

Qj
) = 1 for monic irreducible divisors

Qj (1 ≤ j ≤ 3) of D and there is a monic irreducible divisor Q of D
which is different from Q1, Q2, Q3 and Q - D1D2, then F has infinite
Hilbert 2-class field tower.

Proof. Put K = k(
√

D1,
√

D2), which is a real biquadratic extension
of k in which Q1, Q2 and Q3 split completely. Let E = KF . Since Q
splits in at least one quadratic subfield of K, we have γE/K ≥ 14. Ap-
plying Proposition 2.1 on E/K with γE/K ≥ 14 and (|S∞(K)|, ρE/K) =
(4, 0), we see that E has infinite Hilbert 2-class field tower, so F also
has infinite Hilbert 2-class field tower.
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3. Proof of Theorem 1.1

Consider a real quadratic function field F = k(
√

D) with D = P1 · · ·Pt,
where Pi is a monic irreducible polynomial in A for 1 ≤ i ≤ t. Recall
that s = s(D) is the number of the Pi with odd degree and we as-
sume that 2 - deg(Pi) for 1 ≤ i ≤ s and 2| deg(Pi) for s + 1 ≤ i ≤ t.
Assume that q ≡ 3 mod 4. In this section, we are going to prove
the infiniteness of Hilbert 2-class field tower of F under the condition
r4(C+(F )) ≥ 4. Note that r2(C(F )) = t − 1 if s = 0 and t − 2 if
s ≥ 2. Hence, if r2(C+(F )) ≥ 6 when s = 0 or r2(C+(F )) ≥ 7 when
s ≥ 2, then r2(C(F )) ≥ 6, so F has infinite Hilbert 2-class field tower. If
r2(C+(F )) = r4(C+(F )), then rankM+

F = 0, i.e., M+
F = O, so e12 = e21.

Thus the case r2(C+(F )) = r4(C+(F )) with s ≥ 2 can’t occur by the
quadratic reciprocity law. Thus we only need to consider the cases

(r2(C+(F )), r4(C+(F ))) =

{
(4, 4), (5, 4), (5, 5) if s = 0,

(5, 4), (6, 4), (6, 5) if s ≥ 2.

Let ri(F ) denote the i-th row of M+
F and 0 denote the zero one in Ft

2.
• Case (r2(C+(F )), r4(C+(F ))) = (4, 4) with D = P1P2P3P4P5 and

s = 0. Since M+
F = O, (P1

Pi
) = (P2

Pi
) = 1 for 3 ≤ i ≤ 5, so P3, P4

and P5 split completely in K = k(
√

P1,
√

P2). Let E = KF . Since
F∗q = F∗q ∩ NF/k(F ∗), F∗q is contained in O∗K ∩ NE/K(E∗) and so (O∗K :
O∗K ∩NE/K(E∗)) ≤ 23. Since (P1

P2
) = 1, the ideal class number h(OK) of

OK is even. Since γE/K = 12, by the ambiguous class number formula
([2, Lemma 2.2]), r2(C(E)) ≥ 9. Since r2(O∗E) = 8, by Schoof’s theorem,
E has infinite Hilbert 2-class field tower. Since F ⊂ E ⊂ F

(2)
1 , F also

has infinite Hilbert 2-class field tower.
• Case (r2(C+(F )), r4(C+(F ))) = (5, 5) with D = P1P2P3P4P5P6

and s = 0. Since M+
F = O, (P6

Pi
) = 1 for 1 ≤ i ≤ 5, so F has infinite

Hilbert 2-class field tower by Corollary 2.2.
• Case (r2(C+(F )), r4(C+(F ))) = (5, 4) with D = P1P2P3P4P5P6

and s ∈ {0, 2, 4, 6}. In this case rankM+
F = 1, so at least one row of

M+
F is nonzero and the other ones are multiple of this row. Assume

first s = 0. Since at least two rows of M+
F are equal, we may assume

r5(F ) = r6(F ). Then e5j = e6j for 1 ≤ j ≤ 4, so P1, P2, P3 and P4

split in K = k(
√

P5P6). Let E = KF . Since F∗q = F∗q ∩NF/k(F ∗), F∗q is
contained in O∗K ∩NE/K(E∗) and so (O∗K : O∗K ∩NE/K(E∗)) ≤ 2. Since
γE/K = 8 and r2(C(K)) = 1, by the ambiguous class number formula,
r2(C(E)) ≥ 7. Since r2(O∗E) = 4, by (1.1), E has infinite Hilbert 2-class
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field tower. Since F ⊂ E ⊂ F
(2)
1 , F also has infinite Hilbert 2-class field

tower.
Assume that s = 2 or 4. If ri(F ) = 0 for some s + 1 ≤ i ≤ 6, say

r6(F ) = 0, then (P6
Pj

) = 1 for 1 ≤ j ≤ 5, so F has infinite Hilbert 2-class
field tower by Corollary 2.2. Now we may assume that ri(F ) 6= 0 for
s + 1 ≤ i ≤ 6, so they are all equal. If ri(F ) = rj(F ) = 0 for some
1 ≤ i 6= j ≤ s, say r1(F ) = r2(F ) = 0, then e12 = e21 = 0 which is a
contradiction. Thus at most one row of M+

F is zero. Then all rows of
M+

F are nonzero and they are all equal. If e12 = 1, then all rows of M+
F

are (1 0 1 1 1 1), but then e26 = 1 6= 0 = e62 which is a contradiction. If
e12 = 0, then all rows of M+

F are (0 1 0 0 0 0), but then e26 = 0 6= 1 = e62

which is a contradiction.
Consider the case s = 6. If ri(F ) = rj(F ) = 0 for some 1 ≤ i 6= j ≤ 6,

say r1(F ) = r2(F ) = 0, then e12 = e21 = 0 which is a contradiction.
Thus at most one row of M+

F is zero. Then all rows of M+
F are nonzero

and they are all equal, so we can get a contradiction as above. Thus this
case can’t occur.
• Case (r2(C+(F )), r4(C+(F ))) = (6, 4) with D = P1 · · ·P7 and s ∈

{2, 4, 6}. In this case, rankM+
F = 2, so two rows of M+

F are independent
over F2 and the others are F2-linear combinations of these two rows. If
r7(F ) = 0, then (P7

Pj
) = 1 for 1 ≤ j ≤ 6, so F has infinite Hilbert 2-class

field tower by Corollary 2.2. Thus we may assume r7(F ) 6= 0. Consider
first the case s = 2. At least two of r3(F ), r4(F ), r5(F ), r6(F ) and r7(F )
are equal, say r6(F ) = r7(F ), then (P6P7

Pj
) = 1 for 1 ≤ j ≤ 5, so F has

infinite Hilbert 2-class field tower by Corollary 2.2.
Assume s = 4. If two of r1(F ), r2(F ), r3(F ) and r4(F ) are equal,

say r1(F ) = r2(F ), then (P1P2
Pj

) = 1 for 3 ≤ j ≤ 7, so F has infinite
Hilbert 2-class field tower by Corollary 2.2. Hence, we may assume that
r1(F ), r2(F ), r3(F ) and r4(F ) are all distinct (†). If ri(F ) = 0 for i = 5
or 6, say r6(F ) = 0, then (P6

Pj
) = 1 for 1 ≤ j ≤ 5, so F has infinite

Hilbert 2-class field tower by Corollary 2.2. If two of r5(F ), r6(F ) and
r7(F ) are equal, say r6(F ) = r7(F ), then (P6P7

Pj
) = 1 for 1 ≤ j ≤ 5,

so F has infinite Hilbert 2-class field tower by Corollary 2.2. Thus, we
may assume that r5(F ), r6(F ) and r7(F ) are all distinct and nonzero
(‡). From (†) and (‡), without loss of generality, we may assume that
r5(F ), r6(F ) are linearly independent over F2 and r1(F ) = 0, r2(F ) =
r5(F ), r3(F ) = r6(F ), r4(F ) = r7(F ) = r5(F ) + r6(F ). But, since
r1(F ) = 0, we have e21 = e31 = e41 = 1 and e51 = e61 = e71 = 0, which
is a contradiction.
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Assume s = 6. Since r7(F ) 6= 0, at least two rows of M+
F except the

7-th row are equal, say r1(F ) = r2(F ). Then (P1P2
Pj

) = 1 for 3 ≤ j ≤ 7,
so F has infinite Hilbert 2-class field tower by Corollary 2.2.
• Case (r2(C+(F )), r4(C+(F ))) = (6, 5) with D = P1 · · ·P7 and s ∈

{2, 4, 6}. In this case, rankM+
F = 1, so at least one row of M+

F is nonzero
and the other ones are multiple of this row. If r7(F ) = 0, then (P7

Pj
) = 1

for 1 ≤ j ≤ 6, so F has infinite Hilbert 2-class field tower by Corollary
2.2. Thus we may assume r7(F ) 6= 0 and the other rows of M+

F are
multiple of r7(F ).

Assume that s = 2 or 4. If ri(F ) = 0 for i = 5 or 6, say r6(F ) = 0,
then (P6

Pj
) = 1 for 1 ≤ j ≤ 5, so F has infinite Hilbert 2-class field

tower by Corollary 2.2. We may assume that ri(F ) 6= 0 for i = 5, 6, so
r5(F ) = r6(F ) = r7(F ). Then (P5P6

Pj
) = (P5P7

Pj
) = 1 for 1 ≤ j ≤ 4, so F

has infinite Hilbert 2-class field tower by Corollary 2.4.
Consider the case s = 6. At least three rows of M+

F except the 7-th
row are equal, say r4(F ) = r5(F ) = r6(F ). Then (P4P5

Pj
) = (P4P6

Pj
) = 1

for 1 ≤ j ≤ 3, so F has infinite Hilbert 2-class field tower by Corollary
2.4. We complete the proof of Theorem 1.1.
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