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A PARAMETRIC BOUNDARY OF A PERIOD-2

COMPONENT IN THE DEGREE-3 BIFURCATION SET

Young Ik Kim*

Abstract. The boundary of a typical period-2 component in the

degree-3 bifurcation set is formulated by a parametrization of its im-

age which is the unit circle under the multiplier map. Some proper-

ties on the geometry of the boundary are investigated including the

root point, the cusp and the length as well as the area bounded by

the boundary curve. The centroid of the area for the period-2 compo-

nent was numerically found with high accuracy and compared with its

center. An algorithm drawing the boundary curve with Mathematica

codes is proposed and its implementation exhibits a good agreement

with the analysis presented here.

1. Introduction

The degree-n bifurcation set denoted by M was introduced by De-

vaney [6] in 1986. It is the generalized Mandelbrot set [2, 3, 5-8, 13,

16] under the complex polynomial Pc(z) = zn + c for an integer n ≥ 2

with c, z ∈ C . Some useful properties of M including its geometry

were investigated by a number of researchers [5, 11, 13, 16]. The vari-

ous geometric shapes of M can be found in Geum and Kim [12]. An

attracting period-k component in M is defined as a typical component
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[15] of the set:

{c ∈ C : there exists ξ ∈ C such that Pc
k(ξ) = ξ, | d

dz
Pc

k(z)|z=ξ < 1}.

(1.1)

and is denoted by M k
′. When k = 1, the component is called the main

component. A parametric boundary [11] of the main component in the

degree-n bifurcation set is given by:

c =
α

n
(n cosψ − cos nψ) + i

α

n
(n sinψ − sinnψ), (1.2)

with α = (1/n)1/(n−1), 0 ≤ ψ < 2π. Let W be a component of some

period in the Mandelbrot set(degree-2 bifurcation set) and D be an

open unit disk in the complex plane. Douady and Hubbard [9] showed

that the multiplier map λ : W → D is a conformal equivalence. It

easily extends to a homeomorphism λ : W
⋃

∂W → D
⋃

∂D by

Caratheodory [8]. In particular, the boundary [2, 7, 13, 16] of a period-

2 component in the Mandelbrot set is found to be a circle of radius 1
4

centered at (−1, 0). It is a prime goal of this paper to establish the

boundary of a period-2 component in the degree-3 bifurcation set [11,

12] whose geometric shape is shown in Figure 1.1. The component M k
′

is identified by a number and shaded in different patterns.

On the boundary of the main component along the y-axis, two

period-2 components of cardioid shapes are born symmetrically about

the x-axis. Due to the symmetry of M , the two components constitute

a twin. Hence it suffices to investigate the properties of the period

2-component located above the x-axis. The boundary equation of this

period-2 component will be formulated by a parametrization and some

useful geometric properties of the boundary will be pursued. An al-

gorithm and program codes written in Mathematica [17] are included

to draw the boundary curve of the period-2 component. The compu-

tational boundary curve is illustrated with concluding remarks. The

following notations and symbols will be used throughout the study.
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Figure 1. Bifurcation points on the boundary ∂M k
′

C : set of all complex numbers.

R : set of all real numbers.
N : set of all natural numbers.
∂H : boundary of the set H .

[a, b] : interval {x : a ≤ x ≤ b} .

fk+1(z) = f ◦ fk(z): k-fold composite map of f at z with f0(z) = z.

f ′(z) : complex derivative of f evaluated at z.

z̄ : complex conjugate of z.

i =
√
−1 : imaginary unit.

We will next introduce some definitions and investigate some theo-

rems regarding the properties of the degree-n bifurcation set.

Definition 1.1. Let Pc(z) = zn+c for n ∈ N −{1}, with c, z ∈ C .

Then the degree-n bifurcation set is defined to be the set

M =
{

c ∈ C : lim
k→∞

P k
c (0) 6= ∞

}

.

If n = 2, then M reduces to the Mandelbrot set.
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Definition 1.2. The sets Pm = {c ∈ C : c = reiφm, r ≥ 0, φm =
mπ

(n−1)
} (for m = 1, 2, · · · , 2n − 2) are called the rays of symmetry. The

set P1 is called the principal ray of symmetry and denoted by P . The

set S=
{

c ∈ C : c = reiθ, r ≥ 0, 0 < θ ≤ π
(n−1)

}

is called the principal

sector.

The following theorem confirms the geometric symmetry of the degree-

n bifurcation set with respect to rays of symmetry in the complex plane.

Theorem 1.1. The degree-n bifurcation set M is symmetric in the

c-parameter plane about Pm for all m ∈ {1, 2, · · · , 2n− 2}.

Proof. See p. 224, Geum and Kim [12].

Definition 1.3. Let f be a complex-valued function on C . The

(forward) orbit of z0 ∈ C under f is defined by the sequence {zk ∈ C :

zk = fk(z0), k = 0, 1, 2, · · · }. If f is analytic[1] on C and f ′(ω) = 0,

then ω ∈ C is called a critical point. The orbit of ω is called the

critical orbit. If there exists a smallest positive integer m satisfying

fm(z0) = z0 for z0 ∈ C , then z0 is called the period-m(m-periodic)

point and the orbit of z0 is called the m-cycle or period-m orbit and m

is the period of the orbit. The number λ = d
dz
fm(z)|z=z0 is called the

multiplier(eigenvalue) of fm at z0. If |λ| < 1, the m-cycle is said to be

attracting(attractive) and z0 is called the period-m attractor. If |λ| > 1,

the m-cycle is said to be repelling(repulsive) and z0 is called the period-

m repeller. If |λ| = 1, the m-cycle is said to be indifferent(neutral)

and z0 is called the indifferent(neutral) period-m point. The point z0 is

called preperiodic(eventually periodic) if zk is periodic for some k > 0.

2. The boundary of a period-2 component in the degree-3

bifurcation set

We will formulate the boundary equation of a period-2 component

in the degree-3 bifurcation set by a parametrization. The boundary
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equation is characterized as follows:

Pc
2(z) = z, (2.1)

| λ | = 1, (2.2)

where Pc(w) = w3+c, z is a period-2 point of Pc and λ = d
dw
P 2
c (w) |w=z

is a multiplier with w, c ∈ C . The boundary curve is then described

by c after eliminating z in the above two equations. Since Eq. (2.2)

describes a circle in the image plane, we naturally introduce a parameter

φ ∈ [0, 2π) such that λ = eiφ. Rewriting Eq.(2.1) leads to

(z3 + c)3 + c = z (2.3)

From the elementary complex analysis [1], Eq. (2.2) can be rewritten
as

z(z3 + c) = (1/3) ei(φ/2+jπ) for j = 0, 1. (2.4)

Let a = (1/3) ei(ψ+jπ) with ψ = φ/2. Then Eq. (2.4) becomes

z(z3 + c) = a. (2.5)

Combining Eq. (2.5) with Eq. (2.3) immediately yields c = z−(a/z)3 =

a/z−z3 and (z−a/z)(z2+a2/z2+a+1) = 0. Since z−a/z = z−(z3+c) =

0 implies a fixed point which is no longer of interest, we extract period-2

points z of Pc from the equation:

(z2 + a2/z2 + a+ 1) = 0 (2.6)

Now we introduce Vièta’s transformation t = z + a/z to obtain

t = (a− 1)1/2 (2.7)

and

c = a/z − z3 = a/z − z(z2) = a/z − z(−a2/z2 − a− 1)

= a/z + a2/z + (a + 1)z = (a+ 1)(z + a/z) = (a + 1)t

= (a + 1)(a− 1)1/2. (2.8)
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Thus c has four branched values since a and (a−1)1/2 have two branched

values. It follows that the boundary can be parametrized by c = c(ψ)

with a = ± eiψ/3. That is,

c = (a+ 1)(a− 1)1/2 = ± reiθ, (2.9)

where r = r1
√
r2, r1 =

√
10 + 6 cosψ/3, r2 =

√
10 − 6 cosψ/3,

θ = ψ1 + ψ2/2,

ψ1 = tan−1
(

sinψ
3+cosψ

)

, ψ2 = tan−1
(

sinψ
−3+cosψ

)

and 0 ≤ ψ < π.

The points c represented by Eq. (2.9) trace four branch curves

Γ1, Γ2, Γ1
∗ and Γ2

∗ as shown in Figure 2.1-(a). Described in Sec-

tion 3 is an algorithm drawing the boundary curve with Mathematica

codes. Due to the symmetry [12] of M and in view of continuity of the

boundary, it suffices to consider only one of the four branches. Conse-

quently each branch is defined as follows:

Γ1 =
{

c ∈ C : c = reiθ, a = eiψ/3, 0 ≤ ψ < π
}

,

Γ1
∗ = {−c ∈ C : c ∈ Γ1} , (2.10)

Γ2
∗ = {c̄ ∈ C : c ∈ Γ1} ,

Γ2 = {c̄ ∈ C : c ∈ Γ1
∗} = {−c̄ ∈ C : c ∈ Γ1} .

The boundary of a period-2 component in the upper half plane is

denoted by ∂M 2
′ and is given by:

∂M 2
′ = Γ1

⋃

Γ2. (2.11)

It forms a closed curve enclosing the point W (0, 1), which is the com-

ponent center [12] of the period-2 component. We now pay attention

to the parametric boundary of a period-2 component in the upper half

plane and discuss some geometric properties of the boundary. The fol-

lowing Theorem 2.1 will reveal interesting facts on the boundary which

looks like a cardioid.
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Figure 2.1: Boundaries of period-2 components

Theorem 2.1. Let rs = 4
√

2
3
√

3
, re = rs√

2
= 4

3
√

3
, b = (rs+re)

2
= 2

√
3(
√

2+1)
9

and ρ = (rs − re)/2 = 2(
√

2 − 1)/3
√

3 be given. Let A(0, rs), B(0, re)

and F (0, b) be three given points on the y-axis. Let H,M 2
′ and Ω

respectively denote the interior bounded by a cardioid ∂H specified be-

low, a period-2 component in the degree-3 bifurcation set in the upper

half plane and a disk of radius ρ centered at F (0, b) as shown in Fig-

ure 2.1-(b). Let ∂H, ∂M 2
′ and ∂Ω be represented by the parametric

equations below:

∂H : x1(t) = ρ sin t(1− cos t), y1(t) = ρ cos t(1− cos t)+ rs, 0 ≤ t <

2π,

∂M 2
′ : x(ψ) = r cos θ, y(ψ) = r sin θ, where r and θ are defined as

in Eq. (2.9) and 0 ≤ ψ < 2π,

∂Ω : x2(u) = ρ sin u, y2(u) = ρ cos u+ b, 0 ≤ u < 2π.

Then the following hold:

(a) ∂M 2
′ is inscribed in ∂H with two osculating points A and B.
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(b) ∂Ω is inscribed in ∂M 2
′ with two osculating points A and B.

(c) The perimeter length of ∂H is 16(
√

2−1)/3
√

3 ≈ 1.275446995936534763.

(d) The perimeter length of ∂M 2
′ is approximately 1.264033759241096936.

(e) The area bounded by ∂H is 2(3−2
√

2)π/9 ≈ 0.119780463211699382.

(f) The area bounded by ∂M 2
′ is approximately 0.118042847838789250.

(g) The point A is a cusp.

(h) The centroid of the period-2 component is located at

(0, 0.95490055451650363748).

(i) The component center of the period-2 component is located at (0, 1).

(j) The point B is a root point where the period-2 component buds from

the boundary of the main component in the degree-3 bifurcation set.

Proof. Due to the symmetry of M , we only consider Γ2, the right

half of ∂M 2
′ for our analysis. (a) Let ℓ be a ray passing through

the point A with an inclined angle −π/2 ≤ γ ≤ π/2. Let P (−x, y) =

P (−r cos θ, r sin θ) and Q(x1, y1) = Q(ρ sin t(1−cos t), ρ cos t(1−cos t)+

rs) be the crossing points of ℓ with ∂M 2′ and ∂H , respectively. To

show that Q lies outside of P , it suffices to show ψ ≤ t in [0, π]. Since

γ = tan−1
(

y(ψ)−rs
x(ψ)

)

= tan−1
(

y1(t)−rs
x1(t)

)

= π/2 − t, we treat γ as a

monotone function of ψ or t. It is clear that γ = π/2 for ψ = 0 or t = 0

and γ = −π/2 for ψ = π or t = π, which states ψ = t at the end points

of [0, π].

Figure 2.2 shows γ as a function of ψ or t as well as the angle t and

ψ with a circle centered at A.

For any given −π/2 ≤ γ ≤ π/2, the graphical analysis immediately

suggests that ψ <= t ∈ [0, π]. It is easy to show that for ψ, t ∈ (0, π)

the condition ψ < t is equivalent to

γ = tan−1

(

y(ψ)− rs
x(ψ)

)

< π/2 − ψ. (2.12)
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Figure 2.2: The inclined angle γ as a function of ψ or t

By the monotonicity of tan γ, it is immediately equivalent to the con-

dition that
(

y(ψ)− rs
x(ψ)

)

<
cosψ

sinψ
,

from which it remains to show, for ψ ∈ (0, π), that the newly defined

continuous function f satisfies

f(ψ) = sinψ (y(ψ)− rs) + x(ψ) cosψ = rs sinψ − r cos(ψ − θ) > 0.

(2.13)

By a more detailed analysis, it can be shown that

df(ψ)

dψ
=

g(ψ)

12 · 21/4 ·
√

3(5 − 3 cosψ)3/4
√

5 + 3 cosψ
, (2.14)

where g(ψ) = 16(10−6 cos ψ)3/4 ·cosψ ·√5 + 3 cos ψ+161 sin(ψ−θ)
+ 3 (sin(2ψ − θ) − 6 sin(3ψ − θ) + 9 sin θ − 3 sin(ψ + θ)).

An elementary calculus confirms that g has in (0, π) only one real

zero ψ∗ which is approximately 1.94304509978953403743. Since g is

positive for ψ ∈ (0, ψ∗) and non-positive for ψ ∈ (ψ∗, π), the mono-

tonicity in each interval leads to the fact that f > 0 = limψ−>0+ f(ψ)
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for ψ ∈ (0, ψ∗) and f > 0 = limψ−>π− f(ψ) for ψ ∈ (ψ∗, π). Con-

sequently f > 0 ∈ (0, π). The points A and B are the osculating

points since x1(t)|t=0 = −x(ψ)|ψ=0 = 0, x1(t)|t=π = −x(ψ)|ψ=π = 0,

y1(t)|t=0 = y(ψ)|ψ=0 = rs and y1(t)|t=π = y(ψ)|ψ=π = re are satisfied.

This completes the proof.

(b) Let h(ψ) = (−x(ψ))2 + y(ψ)2 = x(ψ)2 + y(ψ)2, which measures the

distance between (−x(ψ), y(ψ)) ∈ Γ2 and the point F (0, b). Then the

derivative h′(ψ) is given by

h′(ψ) =
sin[ψ/2]

√

2/γ

9
{w1(ψ) + w2(ψ)} , (2.15)

where w1(ψ) = −5 cos(2θ − ψ/2) + 9/2 · cos(2θ + ψ/2)

+ 9/2 · cos(2θ + 3ψ/2) + 3 · cos(ψ/2) + 3 · cos(3ψ/2),
w2(ψ) = (2

√
2−2+23/4γ1/4

√
β sin θ)·(9 sin(θ+3ψ/2)−sin(θ−ψ/2))

23/4γ1/4
√
β

,

γ = 5 − 3 cos ψ and β = 5 + 3cosψ.

It has three real zeros 0, ψ̄ and π with ψ̄ ≈ 1.456050346953239800468,

found by a numerical method of high precision. Hence h assumes its

minima ρ2 at A(0, rs) when ψ = 0 or at B(0, re) when ψ = π. The

pointsA and B are the osculating points since x2(u)|u=0 = −x(ψ)|ψ=0 =

0, x2(u)|u=π = −x(ψ)|ψ=π = 0, y2(u)|u=0 = y(ψ)|ψ=0 = rs and y2(u)|u=π =

y(ψ)|ψ=π = re are satisfied. This proves the assertion.

(c) The perimeter length of ∂H is from a basic calculus easily given by

∫ π

0

√

(

dx1

dt

)2
+

(

dy1
dt

)2
dt = 8ρ = 16(

√
2−1)/3

√
3 ≈ 1.2754469959365347639.

(d) The perimeter length of ∂M 2
′ is from a basic calculus easily given

by

∫ π

0

√

(

dx
dψ

)2

+
(

dy
dψ

)2

dψ ≈ 1.264033759241096936, which was numeri-

cally found.

(e) Note that r(t) =
√

x2 + (y − rs)2 = ρ(1 − cos t) defines a cardioid
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with cusp point at A(0, rs). The area bounded by ∂H is thus from a

basic calculus easily given by

2·1
2

∫ π

0
ρ2(1−cos t)2dt = 3

2
ρ2π = 2(3−2

√
2)π/9 ≈ 0.119780463211699382.

(f) The area bounded by ∂M 2
′ is from a basic calculus easily given by

2(A1−A2), where A1 =
∫ ψ†

0
|y(ψ)x′(ψ)|dψ and A2 =

∫ π

ψ† |y(ψ)x′(ψ)| dψ,

with ψ† ≈ 2.0081718975276435150 as a parameter of the rightmost

point on ∂M 2
′ found by numerical method of high precision. As a re-

sult, the area is approximately 0.118042847838789250.

(g) It can be shown that x′(ψ)
y′(ψ)

= dx
dy

= 0 at ψ = 0 and x′(ψ)
y′(ψ)

= dx
dy
> 0 for

ψ = ǫ > 0 with ǫ as a sufficiently small positive number. The symmetry

of M confirms that A is a cusp.

(h) The x-coordinate of the centroid T is obviously 0 due to the sym-

metry of M 2
′. Let ȳ be the y-coordinate of the centroid and S be the

area bounded by ∂M 2
′. Then we have

ȳ =
1

S

∫

M 2
′

y dS. (2.16)

Divide the region M 2
′ into two subregions by the horizontal line pass-

ing the point A. In each subregion, appropriate expression for dS is

considered to obtain the integral (2.16). A direct computation shows

that ȳ = 0.95490055451650363748.

(i) See p. 230, Geum and Kim [10] for computing the component center

W .

(j) The equation [8] λ2 = 1 with λ = d
dw
Pc(w)|w=z and z as a fixed

point gives the corresponding root point satisfying Eq. (1.2).

3. Algorithm and implementation drawing ∂M 2
′

In this section we list an algorithm and Mathematica codes drawing

all the boundaries of period-2 components in the degree-3 bifurcation

set. The symmetry of M is effectively used in drawing the boundaries.
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The Mathematica[17] command ParametricPlot plays a critical role for

plotting the boundaries. Figure 2.1-(a) shows an implementation result.

Algorithm 3.1

Step 1. Set variables r, r1, r2, ψ1, ψ2 and θ according to Eq. (2.9).

Step 2. Let (x, y) represent a point on Γ2, with x = r cos θ and

y = r sin θ.

Step 3. Plot (x(ψ), y(ψ)), (−x(ψ), y(ψ)), (x(ψ),−y(ψ)), (−x(ψ),−y(ψ))

simultaneously, with a parameter 0 ≤ φ ≤ π, using the

symmetry of the degree-3 bifurcation set.

(Mathematica Codes for Algorithm 3.1: The boundary ∂M 2
′)

r1 = 1/3*Sqrt[10 + 6*Cos[ψ]];

r2 = 1/3*Sqrt[10 - 6*Cos[ψ]];

ψ1 = ArcTan[3 + Cos[ψ], Sin[ψ]];

ψ2 = ArcTan[-3 + Cos[ψ], Sin[ψ]];

r = r1*Sqrt[r2]; θ = ψ1 + ψ2 / 2;

x = r * Cos[θ]; y = r * Sin[θ];

ParametricPlot[{{x, y} , {−x, y} , {x,−y} , {−x,−y}} , {ψ, 0,Pi},
PlotPoints → 400, PlotStyle → Thickness[0.02],

AspectRatio → Automatic, PlotRange → All, Ticks → None];

4. Results and Discussion

The approach in the proof of Theorem 2.1-(i) promisingly determines

an inclusion relation whether a parametric boundary is inscribed in a

known curve. The numerical results in Section 2 are found from the
FindRoot command of Mathematica 4.0 [17], which is a basically a New-

ton’s method [4, 10]. The command was employed with appropriate op-

tions such as AccuracyGoal → 20, DampingFactor → 1, MaxIterations

→ 25 and WorkingPrecisions → 48. In order to obtain more accurate

results, the computation was carried out with 48 significant digits of

precision and the final numerical results are expected to be accurate up

to approximately 20 significant digits.

The symmetry of M 2
′ was extensively used in the construction of
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the boundary ∂M 2
′. The first branch as well as other branches was

drawn with ParametricPlot command of Mathematica using symmetry

and reflection.

In view of the results of Theorem 2.1, the boundary ∂M 2
′ in the

degree-3 bifurcation set can be considered as a deformed cardioid whose

area and length are slightly smaller (approximately 1.5 % and 0.9 %

less) than those of the actual cardioid ∂ . The perimeter length of ∂M 2
′

and the area bounded by ∂M 2
′ are accurately obtained from the NIn-

tegrate command of Mathematica with options such as AccuracyGoal

→ 20 and WorkingPrecisions → 48. The total area bounded by ∂M 2
′

is found to be approximately 0.2360856956775785 as a result of Theo-

rem 2.1-(f), which occupies about 13.1 % of the estimated gross area of

the degree-3 bifurcation set. The author of this paper estimated that

the gross area is around 1.79 by the pixel counting method[14] with a

common escape-time algorithm [2, 16] for the grid size of 15000 X 15000

in the region {c ∈ C : |Re(c)| ≤ 1.3515625, |Im(c)| ≤ 1.3515625} with

an iteration limit of 8192. The better estimation requires a higher iter-

ation limit as well as a larger grid size. The boundary of the period-2

component ∂M 2
′ in the degree-3 bifurcation set is precisely inscribed

in ∂H . The circle ∂Ω is also inscribed in both ∂M 2
′ and ∂H . As a

result of Theorem 2.1, we observe that Ω ⊂ M 2
′ ⊂ H .

The computation of the centroid requires the topmost point (0.06718663,

1.1269745) and the point (0.155766139, rs) where the horizontal line

passing through A meets Γ2. Observe that the centroid is located be-

low the component center (0,1) as expected.

Since the boundary equations of period-2 components in the degree-

3 bifurcation set are explicitly known by a parametrization as shown in

Eq. (2.9), the escape-time algorithm constructing the whole degree-3

bifurcation set can be updated to bypass the points in period-2 compo-

nents and to reduce the construction time. The current analysis shown

in this study can be easily extended to the case when n ≥ 4 and k = 2,

despite the expected complexity of the algebraic manipulation.
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