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SOME GEOMETRIC CONSEQUENCES OBTAINED
FROM PARTIAL ELIMINATION IDEALS

JEAMAN AHN*

ABSTRACT. In [9], M. Green introduced the partial elimination
ideals defining the multiple loci of the projection image of a closed
subscheme in P". In this paper, we give some geometric conse-
quences obtained from partial elimination ideals.

1. Introduction

Let V be a vector space of dimension n + 1 over an algebraically
closed field k of characteristic zero with basis zg,...,z,. If X is a
nondegenerate reduced closed subscheme in P} = P(V') we write Ix for
the saturated defining ideal of X in the coordinate ring R = k[zo, . .., Zy]
of P(V). If W is a subspace of V with a basis x4, ..., x, we write S; for
the symmetric algebra Sym(W') = k[x¢, x¢41 ..., 2,]. Let A be a linear
subvariety in P} = P(V') with homogeneous coordinates g, ..., ¢ 1.

If we consider an outer projection of X from the center A

T X = PPt =P(W),

then the simplest question one could ask about the projection 7y : X —
Pz_t is the following: what can be said about the set of fibers?, or what
sort of set is the image? These questions are the beginning of elimination
theory (see [1], [2], [3], [5], [7], [9], [10]).

Partial elimination ideals which have been introduced by M. Green
([9]) can be used to study this kind of questions. Through the use
of partial elimination ideals, these can be changed to questions about
homogeneous ideals in polynomials rings (see [3], [4]).
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This paper is devoted to investigate some geometric consequences
obtained from partial elimination ideals. We will focus on the following
free presentation:

@Sl @51]%@51 @ﬁoj ®o R/IXHO.

We give a geometric meaning of the kernel of the map ¢¢ (Theorem 3.4)
by showing that the kernel of ¢ is deeply related to partial elimina-
tion ideals (Proposition 3.3). These results show a relationship between
partial elimination ideals and projection images of X. As an applica-
tion, we recover that multiple locus of projections are defined by partial
elimination ideals set-theoretically, which is given by M. Green in [9].

2. Preliminaries

In this section we recall some notations and definitions which will be
used throughout the remaining part of the paper.

Let R = k[zo, ..., x,] where k is an algebraically closed field of char-
acteristic zero. For an element o = (ag,...,an) € Z”+1, we let z¢
denote z(° - - - 24. Note that an ordering > on Z>0 gives us an order-
ing on monomials in R.

The graded lexicographic order (grlex order for short) is a typical
example of orderings on n-tuples.

DEFINITION 2.1. ([2], [3], [4]) Let @ and 3 be elements in Z%,. We
say @ >grex (3 if deg(z®) > deg(2”), or

(a) deg(z®) = deg(a”)
(b) the leftmost nonzero entry of o — 3 is positive.

There is a notion of regularity for sheaves on projective spaces due
to David Mumford that generalizes the idea of Castelnuovo. A closely
related notion for graded modules arises naturally in the study of finite
free resolutions and we present it here.

DEFINITION 2.2. ([6], [7], [8]) For an (n + 1)-dimensional k-vector
space V with basis zg,...,x,, we form the symmetric algebra R =
Sym(V) = k[xo, ..., zp].

(a) For a finitely generated graded R-module M = @,., M,, consider
a minimal free resolution

.H@R_Z_jﬁw ~~-—>@R 50] ) 5 M =0
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of M as a graded R-modules. Thus ij( ) := dimy, Tor®(M, k);4;. We
say that M is m-regular if 3; ;(M) = 0 for all ¢ > 0 and j > m. The
Castelnuovo-Mumford regularity of M is defined by

reg(M) := min{ m | M is m-regular}.

(b) For a coherent sheaf M on P(V), let M = @,c; H*(M(()) be its
associated graded R-module. Then we write

reg(M) := min{m | H'(M(m —i)) = 0 for all i > 1}.
In this case, it is well known that reg(M) = reg(M) (see [6]).
For a proof of main theorem, we need the following lemma.

LEMMA 2.3. If 0 - A — B — C — 0 is a short exact sequence of
graded finitely generated R-modules, then

(1) reg(A) < max{reg(B),1eg(C) + 1},

(B
(b) reg(B) < max{reg(A), reg(C)},
(c) 1eg(C) < max{reg(4) — 1, reg(B)}.

Proof. See Corollary 20.19 in [7] for a proof. O
3. Partial elimination ideals

In this section we define the partial elimination ideals and describe
their basic algebraic and geometric properties. Let m; : X — Y C Pt

be an outer projection from the center ¢ = [1:0: ---: 0]. For the degree
lexicographic order, if f € Ix has leading term in(f) = xgo ozt we

set do(f) = do, the leading power of zp in f. Then it is well known that
Iy =@ {f € Ix)m | do(f) =0} =Ix N S.
m>0
More generally, one can define partial elimination ideals of Iy, which

was given by M. Green in [9].

DEFINITION 3.1 ([9]). Let Ix C R be a homogeneous ideal of X and

let
=D {f € Ux)m | do(f) <}

m>0

If f € K;(Ix), we may write uniquely f = z f +g where do(g) < i. Now
we define K;(Ix) by the image of K;(Ix) in S under the map f — f
and we call K;(Ix) the i-th partial elimination ideal of Iy.
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REMARK 3.2. (a) If we let S = k[z1,...,2,] then Ki(I) and K(I)

are graded S-modules. Note that Kj(I) is not a graded R-module in
general.
(b) Let P = (x1,...,xy,) be the defining ideal of a point p = [1 : 0 :
.-+ : 0]. For a reduced closed subscheme X in P"| if we write Ix for the
defining ideal of X then note that f € Kj(Ix)q if and only if f € P4k
if and only if mult,(f) > d —k. This result follows directly from the fact
that

(i) mult,(f) is the length of R/(f) ® Rp
(ii) the length of (R/P% %) ® Rp is equal to d — k.

Proposition 3.3 and Theorem 3.4 are main results in this paper, which
give a relationship between the partial elimination ideals and the geom-
etry of the projection map from P" to P*~1.

ProprosIiTION 3.3. Let X be a reduced closed subscheme in P".
Suppose that my : X — Y C P! be a projection from the center

gq=1[1:0---:0]. Then, as a S1-module, there is a free presentation of
R/Ix

P Si(—5)®% 5 P Si(—j)PPs £ R/Ix — 0,
such that the kernel of ¢ is Kd(IX) for some d > 0.

Proof. Note that we can choose a homogeneous polynomial of the
following form in the ideal Ix:

f:a:g+1+xggd+---+xogl+gg for some d > 0,

where g; is a homogeneous form of degree d —i+1 in S1 = k[x1,...,x,].
This follows from the fact that ¢ ¢ X. From the definition of partial
elimination ideals, we have the d-th partial elimination ideal Kj,1(Ix)
is S = k[x1,...,x,]. Consider a graded Sj-module homomorphism
¢o : ®LyS(—i) — R/Ix defined by ¢p(e;) = x for each free basis e; of
S(—1).

Now we claim that g is surjective and the kernel of ¢q is f(d(l X)-
First, note that

! = xggd+---+xog1 +go mod Ix.

Hence, this equation can be used to express every monomial z™ for
m > n modulo Ix in terms of monomials z%, where a = (ap, a1, ..., an)
and ag < d. This implies that the Si;-module homomorphism ¢q is
surjective.
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 Now let us prove ker ¢g = f(d(l x). It suffices to show that ker ¢o C
Ki(Ix) since K4(Ix) C Ix and thus ¢o(K4(Ilx)) is vanishing. Suppose
that

d
G = (ga, .- 91,90) € @ S(—i)
i=0

is an element in the kernel of ¢g. Then ¢(G) = mggd + -4 2091 + go
has to be contained in Ix and thus

00(G) € Kq(Ix).

Consequently, we construct a free presentation of R/Ix as a Sij-module
d
P s £ P Si(—i) 2 R/Ix — 0,
i=0

and the kernel of g is Kd(I x), as we wished. O

THEOREM 3.4. Let X be a reduced closed subscheme in P" and we
write Ix for the defining ideal of X. If L is a line through the point
p=1[1:0---:0] then we have

L C Z(Ky(Ix)) if and only if length(L N X) > k.

Proof. (<): Suppose that f € Ki(Ix)q and p = [1:0---:0]. Then
we have f € P&F = (2q,...,2,)%% and mult,(f) > d — k by Re-
mark 3.2. For a line L through the point p, if the length of intersections
between X and L is at least k + 1 then

length(Z(f)NL) > mult,(f)+length(XNL) > (d—k)+(k+1) =d+1.

Since f is a homogeneous polynomial of degree d, this implies that f is
vanishing on L. Hence L C Z(Rk(IX)).

(=) Conversely, suppose that there is a line L C Z (f(k(I X)) passing
through the point p with length(X N L) < k. Then it suffices to show
that L is not contained in Z(f(k(IX)). This can be done if we prove

that there is a polynomial f € K. i (Ix)q such that f is not vanishing on
the line L,
Now consider the following short exact sequence:

Ix N Pi-k
N
IXﬁPdfkﬂIL

(31) 0—-IxNnP¥r N1, - IxnPr - 0,
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Let Y = X Up®* be the disjoint union of a fat point p?~* and X. Since
we have
IxnpPi=F Iy _ (Iy,Ip)
IxNPiknI,  Lynl, I

and we can think of the ideal % as the defining ideal of collinear

zero dimensional subscheme on the line L, we conclude that

o Ix N P+ e (L
E\TxnpPitng, ) T,
< deg(Y)

<length(X N L)+ (d—k)
<d.

d=k and X, we have

Since Y is the disjoint union of a fat point p
reg(Y) = max{reg(X),reg(p?*)} < d

for all sufficiently large integer d. Consequently, by Lemma 2.3, we have

(Y UL) < max{reg(Y) x NP + 1}
max{r T
reg < maxqreg(Y),reg | =57~

<d+1,
and thus HY(P", T, xpa—x(d)) = 0 for all d > 0.
By sheafifying (3.1), we have the following short exact sequence of
sheaves
0 = Zryxupi-k = Ixypi—r = Lxypa-rk/Luxupi—k — 0,
and we conclude that, for all d > 0,
H°(P", Iy, pa-i(d)) — HO(LU X U P*" Ty pai(d))

is surjective from the vanishing of H'(P",Z; xpa-r(d)) = 0. Now
choose a nonzero form f in H*(LU X U P4* Ty pa-r(d)). If we write
f € HY(P", Iy pi-r(d)) for the preimage of f then

fe H Iy pa-r(d)) = (Ix NPy Ki(Ix)g for all d > 0.

Then f is a homogeneous polynomial of degree d, which is not vanishing
on L. This completes the proof. ]

As a Corollary, we recover Green’s result in [9], which shows mul-
tiple locus of projections are defined by partial elimination ideals set-
theoretically.
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COROLLARY 3.5 ([9]). Let X be a reduced subscheme of P" and let
Ix be the homogeneous ideal of X. Let
7P — Pt

be an outer projection from the point p = [1 : 0 : --- : 0]. Set the-
oretically, the m-th partial elimination ideal K,,(Ix) is the ideal of
{q € 7(X) | length(71(q)) > m}.

Proof. Let Yy, = {q € w(Z) | length(r~'(¢q)) > m}. Then it is

enough to show that
Yo = Z(Km(Ix))
(C): For a point ¢ = [0, a1, ...,a,] € Yy, if L = pg be the line passing
through p and ¢ then we see L C Z(f(m(I)) by Theorem 3.4. Let
¢ =[t,ai,...,a,) be a point in L and let f = z{'f + g is a polynomial
of K,,(I). Since f is vanishing on the line L, we see that
f(t,q1,...,q,) =0 for all t € k,

as a polynomial on the line L with leading coefficient f(q’) € k. Hence
we conclude that f(¢') =0 and this proves ¢ € Z (K, (Ix)).

(D): We will give a proof by induction on m > 0. Suppose that ¢ €
Z(Kk(IX)) and let L be the line passing through p and ¢. For m = 0,
if f € Ko(Ix) then f can be regarded as a polynomial in Ko(Ix). Since
q € Z(Ko(Ix)) and f(¢') = f(q) = 0 for all ¢ € L, we see that each
polynomial in RO(IX) is vanishing on L. Then we have L C Z(KO(IX))
and thus it follows from Theroem 3.4 that length(L N X) > 0. This
proves length(rm~1(g)) > 0.

Now suppose that m > 0 and g € Z(Km(IX)). Since we have

q€ Z(Kn(Ix)) C Z(Km-1(I)),

we see multy(m(Z)) = length(L N Z) > m — 1 by induction on m. Note
that we have to show that multy(w(Z)) = length(L N Z) > m. Now
assume that

multy(7m(Z)) = length(L N X) < m.
Then length(L N Z) = m and there is a polynomial

f= JJS”‘erg € [N{m(IX)7 where dp(g) <m —1

such that f does not vanishing on L by Theorem 3.4. If we write
g = [ai,...,a,] then points on the line L can be parametrized by
[t,a1...,ay]. Note that f is a polynomial in Ky, (Ix) and ¢ € Z(Km(Ix)).
Hence we see

fltar...,a,) =t"f(q) +g(t,a1...,an) = g(t,a1...,a,),
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is a polynomial of degree m — 1 in a polynomial ring k[t]. However,

length(Z(f) N L) > length(X N L) =m

and this contradicts that f is not vanishing on the line L. Consequently,
we prove length (X N L) > m as we wished. O

(1]
2]

(3]

(10]

*
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