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Abstract. Here we see that the p-Cesàro operators, the general-
ized Cesàro operators of order one, the discrete generalized Cesàro
operators, and their adjoints are all posinormal operators on ℓ2,
but many of these operators are not dominant, not normaloid, and
not spectraloid. The question of dominance for Ck, the generalized
Cesàro operators of order one, remains unsettled when 1

2
≤ k < 1,

and that points to some general questions regarding terraced ma-
trices.

Sufficient conditions are given for a terraced matrix to be nor-
maloid. Necessary conditions are given for terraced matrices to be
dominant, spectraloid, and normaloid. A very brief new proof is
given of the well-known result that Ck is hyponormal when k ≥ 1.

1. Introduction

A lower triangular infinite matrixM =M ({an},{cn}), acting through
multiplication to give a bounded linear operator on ℓ2, is factorable if its
nonzero entries mij satisfy mij = aicj where ai depends only on i and cj
depends only on j. A factorable matrix is terraced (see [5, 10]) if cj = 1
for all j. For the operator M on ℓ2 to be posinormal, there must exist a
positive operator P on ℓ2 satisfying MM* = M*PM . These operators
were introduced and studied in [11], where it was observed that the set of
all posinormal operators on any Hilbert space is an enormous collection
that includes every invertible operator and all the hyponormal operators.
A dominant operator M is one for which Ran(M − λ) ⊂ Ran(M − λ)∗

for all λ in the spectrum of M (see [15]), and a hyponormal operator M
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Key words and phrases: Cesàro operator, posinormal operator, dominant opera-

tor, hyponormal operator, spectraloid operator, normaloid operator, factorable ma-
trix, terraced matrix.



426 Henry Crawford Rhaly, Jr.

satisfies ⟨(M∗M−MM∗)f, f⟩ ≥ 0 for all f in ℓ2. Hyponormal operators
are necessarily dominant; it was shown in [11, Proposition 3.5] that M
is dominant if and only if M − λ is posinormal for all complex λ, so it
follows that

{posinormal operators} ⊃ {dominant operators}
⊃ {hyponormal operators}.

Here we will explore how these properties apply to three special types
of factorable matrices that arise as generalized Cesàro matrices. This
will lead us to a more general situation involving some terraced matrices
and also to sufficient conditions for a terraced matrix to be normaloid,
as well as necessary conditions for terraced matrices to be dominant,
spectraloid, and normaloid.

Before proceeding, we recall that the Cesàro matrix C is the terraced
matrix that arises when ai =

1
i+1 for all i. In [1] it is shown that C is

bounded, noncompact, and hyponormal; its norm is ||C|| = 2, and its
spectrum is

σ(C) = {λ : |λ− 1| ≤ 1}.
Since C is hyponormal, it is necessarily dominant and posinormal. C∗

is shown to be posinormal in [11, Theorem 5.3], and it is a consequence
of [13, Theorem 3.3] that C∗ cannot be dominant.

2. On posinormality and dominance

First we will consider the p-Cesàro matrices and the generalized
Cesàro matrices of order one, and these examples will point us toward
some questions concerning terraced matrices. Throughout this section
we will make repeated use of the following results found in [11, Theorem
2.1 and Corollary 2.3].

Proposition 2.1. For a bounded linear operator M on ℓ2, the fol-
lowing statements are equivalent:

(1) M is posinormal;
(2) RanM ⊆ RanM∗;
(3) MM∗ ≤ γ2M∗M for some γ ≥ 0; and
(4) There exists a bounded operator T on ℓ2 such that M = M∗T .

Proposition 2.2. If M is posinormal, then KerM ⊆ KerM∗.

For fixed p ≥ 1, the p-Cesàro matrix Mp is the terraced matrix as-
sociated with the sequence defined by ai =

1
(i+1)p for all i. Note that
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M1 = C. In [9] it is shown that when p > 1 these operators are bounded,
compact, and not hyponormal; they have spectrum

σ(Mp) = { 1

(n+ 1)p
: n ≥ 0} ∪ {0}.

Theorem 2.3. (1) Both Mp and M∗
p are posinormal for p > 1.

(2) Both Mp and M∗
p are not dominant for p > 1.

Proof. (1) From [11, Theorem 2.2] we know that Mp is posinormal for
all p > 1. To begin our proof that M∗

p is posinormal, we define T = [tmn]
by

tmn =


(n+1)p−np

(m+1)p if n ≤ m;

−1 if n = m+ 1;
0 if n > m+ 1.

Let U denote the unilateral shift. Then T + U∗ is a lower triangular
matrix whose entries are all nonnegative and dominated by the cor-
responding entries of pC, a fact that relies heavily on the inequality
1− np

(n+1)p ≤ p
n+1 for all n and for all p > 1 (see [4, Theorem 42, 2.15.3,

page 40]). It follows that T +U∗ is a bounded operator, and hence T is
also bounded. A routine computation shows that Mp = TM∗

p and hence
M∗

p = MpT
∗, so M∗

p is posinormal for all p > 1.

(2) To see that Mp cannot be dominant, we consider f defined as follows:

f(0) = 1 and f(n) =
∏n

j=1
jp

(j+1)p−1 for n ≥ 1. In [9] it is verified

that f ∈ ℓ2 is an eigenvector for Mp associated with eigenvalue 1, so
f ∈ Ker(Mp − I); but f /∈ Ker(M∗

p − I) since ((M∗
p − I)f)(0) > 0.

It follows that Mp − I cannot be posinormal, and therefore Mp is not
dominant. Similarly, M∗

p is not dominant since g :≡< 1, 0, 0, 0, .... >T∈
Ker(M∗

p − I) but g /∈ Ker(Mp − I).

For fixed k > 0, the generalized Cesàro matrices of order one are
the terraced matrices Ck that occur when ai =

1
k+i for all i. From [11,

Theorem 5.1] we know that these operators have spectrum

σ(Ck) = {λ : |λ− 1| ≤ 1} ∪ {1
k
}

and are, consequently, not compact for k > 0.

Theorem 2.4. (1) Both Ck and C∗
k are posinormal for k > 0.

(2) (a) Ck is hyponormal and hence dominant if k ≥ 1, but Ck is not
dominant for 0 < k < 1

2 ; and (b) C∗
k is not dominant for k > 0.
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Proof. (1) See [11, Theorems 5.2 and 5.3] for the proof that Ck is
posinormal and the proof that C∗

k is posinormal for k > 0.
(2) (a) If Q denotes the diagonal matrix with diagonal {k, 1, 1, 1, ....} and
P denotes the diagonal matrix with diagonal { k+i

k+i+1 : i = 0, 1, 2, 3, ....},
it can be verified that

CkQC∗
k =


1
k

1
k+1

1
k+2 . . .

1
k+1

1
k+1

1
k+2 . . .

1
k+2

1
k+2

1
k+2 . . .

...
...

...
. . .

 = C∗
kPCk

for all k > 0. Therefore
⟨(C∗

kCk − CkC
∗
k)f, f⟩ = ⟨(C∗

kCk − C∗
kPCk + CkQC∗

k − CkC
∗
k)f, f⟩

= ⟨(I − P )Ckf, Ckf⟩+ ⟨(Q− I)C∗
kf, C

∗
kf⟩ ≥ 0

for all f in ℓ2 when k ≥ 1, so Ck is hyponormal and therefore also
dominant for those values of k. To see that Ck cannot be dominant
for 0 < k < 1

2 , we consider f defined as follows: f(0) = 1 and f(n) =∏n−1
j=0 (k+j)

n! for n ≥ 1. Using Raabe’s test (see [6, page 396]), it can be

verified that f ∈ ℓ2 is an eigenvector for Ck associated with eigenvalue
1
k for 0 < k < 1

2 , so f ∈ Ker(Ck − 1
k ); but f /∈ Ker(C∗

k − 1
k ) since

((C∗
k − 1

k )f)(0) > 0. Therefore Ck − 1
k is not posinormal for 0 < k < 1

2 ,
and hence Ck cannot be dominant for those values of k. (b) It is a
consequence of [13, Theorem 3.3] that C∗

k is not dominant for k > 0.

See [11, 14] for earlier proofs of the hyponormality of Ck when k ≥ 1.

Corollary 2.5. 1
k ||Ckf ||2 ≥ ||C∗

kf ||2 for all f in ℓ2 when 0 < k ≤ 1.

Proof. We make use of the relationship CkQC∗
k = C∗

kPCk from the
proof of the theorem. For all f in ℓ2 we have
⟨( 1kC

∗
kCk − CkC

∗
k)f, f⟩ = ⟨( 1kC

∗
kCk − 1

kC
∗
kPCk +

1
kCkQC∗

k − CkC
∗
k)f, f⟩

= ⟨ 1k (I −P )Ckf, Ckf⟩+ ⟨( 1kQ− I)C∗
kf, C

∗
kf⟩ ≥ 0

when 0 < k ≤ 1, and this gives the result.

We note that part of the second sentence in the statement of [11,
Theorem 5.1], concerning the point spectrum of Ck, should be corrected
to read as follows:

π0(Ck) = ϕ unless k < 1
2 , in which case π0(Ck) = { 1

k}.
We note also that the question of dominance has not been settled here
for Ck when 1

2 ≤ k < 1.
When k > 1, the situation for Ck can be regarded as a special case

of the following theorem, whose proof occurs in [13, Theorem 2.2].
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Theorem 2.6. Assume M(a) :≡ M(a, 1) is a terraced matrix associ-
ated with a sequence a = {an} satisfying the following conditions:
(1) {an} is a strictly decreasing sequence that converges to 0;
(2) {(n+ 1)an} is a strictly increasing sequence that converges to

L < +∞; and
(3) 1

an+1
≥ 1

2(
1
an

+ 1
an+2

) for all n.

Then M(a) is hyponormal.

Since M(a) is hyponormal, it will necessarily be dominant and posi-
normal. We note that Ck does not satisfy condition (2) when 0 < k < 1.
Consider what happens when that condition is changed to the following:

(2′) {nan} is a strictly increasing sequence that converges to L < +∞.

This new condition is satisfied by Ck for all k > 0. We observe that
(2′) will allow a0 > L, whereas the original condition (2) did not. Since
an ≤ L for n ≥ 1, we conclude from [10, Theorems 2.4 and 2.5] that

σ(M(a)) = {λ : |λ− L| ≤ L} ∪ {a0}
and that a0 is an eigenvalue for M(a) when a0 > 2L, just as 1

k was an

eigenvalue for Ck when 0 < k < 1
2 ; so, when a0 > 2L, an argument

similar to what we used in Theorem 2.4 for Ck can be used to show that
M(a) fails to be dominant, and therefore also fails to be hyponormal,
although it is posinormal (see [13, Corollary 2.2]). We note further that
M(a) also fails to be hyponormal when a0 = 2L since ||M(a)|| > a0 =
2L = r(M(a)), where r(M(a)) is the spectral radius of M(a). The
question of dominance for M(a) remains unsettled for the cases when
L < a0 ≤ 2L and a1 < a0 ≤ L.

The next theorem gives a necessary condition for a terraced matrix
to be dominant. The proof is omitted since the key ideas have already
been presented here.

Theorem 2.7. Assume that a= {an} is a strictly decreasing sequence
that converges to 0 and that {(n+1)an} converges to L (0 < L < +∞).
In order for the terraced matrix M(a) to be dominant, it is necessary
that a0 ≤ 2L; moreover, if a0 = 2L, then a0 must not be an eigenvalue
of M(a).

We note that it is known that a0 will not be an eigenvalue of M(a) when
a0 < 2L (see [10, Theorem 2.4]).

The previous examples have been terraced matrices, but our next ones
are not. For fixed α ∈ (0, 1], the discrete generalized Cesàro matrices

Aα (see [7,8]) are the factorable matrices that occur when ai =
αi

i+1 and
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cj = 1
αj for all i,j. Note that A1 = C. In [7] it is shown that when

0 < α < 1 these operators are bounded, compact, and not hyponormal;
they have spectrum

σ(Aα) = { 1

n+ 1
: n ≥ 0} ∪ {0}.

Theorem 2.8. (1) Both Aα and A∗
α are posinormal for 0 < α < 1.

(2) Both Aα and A∗
α are not dominant for 0 < α < 1.

Proof. (1) From [11] we know that Aα is posinormal when α ∈ (0, 1).
To aid in the proof that A∗

α is posinormal, we define T = [tmn] by

tmn =


n+1
m+1α

m−n(1− n
n+1α

2) if n ≤ m;

−α if n = m+ 1;
0 if n > m+ 1.

T can be shown to be bounded by an argument similar to that presented
in the proof of [11, Theorem 4.1]. Then it is straightforward to verify
that Aα = TAα* and hence Aα* = AαT*, so Aα* is posinormal for
0 < α < 1.
(2) It is routine to verify that f :≡< 1, α, α2, α3, .... >T∈ ℓ2 is an eigen-
vector associated with eigenvalue 1 for Aα (0 < α < 1) and hence
f ∈ Ker(Aα − I), but f /∈ Ker(A∗

α − I). Thus Aα − I is not posinor-
mal, so Aα cannot be dominant. Similarly, A∗

α is not dominant since
g :≡< 1, 0, 0, 0, .... >T∈ Ker(A∗

α − I) but g /∈ Ker(Aα − I).

3. Conditions for terraced matrices to be spectraloid and
normaloid

Following Halmos, we recall that the numerical range W (M) of the
operator M is the set {< Mf, f >: ||f || = 1}, and the numerical radius
ω(M) is the number sup{|λ| : λ ∈ W (M)}. M is spectraloid if ω(M) =
r(M), and M is normaloid if ω(M) = ||M ||. The inequality r(M) ≤
ω(M) ≤ ||M || holds for all M . From [3, Problem 218 (b)] we know that
every normaloid operator is spectraloid. All hyponormal operators are
normaloid.

The first theorem of this section gives sufficient conditions for a ter-
raced matrix to be normaloid.

Theorem 3.1. Assume that a = {an} is a decreasing sequence that
converges to 0 and that {(n+ 1)an} is an increasing sequence that con-
verges to L with 0 < L < +∞. Then M(a) is normaloid (and hence
spectraloid).
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Proof. If D is the diagonal matrix with diagonal {(n + 1)an}, then
M(a) = DC, so ||M(a)|| ≤ ||D||||C|| = 2L; and

σ(M(a)) = {λ : |λ− L| ≤ L},
so r(M(a)) = 2L. Therefore 2L = r(M(a)) ≤ ω(M(a)) ≤ ||M(a)|| =
2L, so r(M(a)) = ω(M(a)) = ||M(a)||, which means that M(a) is both
normaloid and spectraloid.

Example 3.2. The sequence defined by an = sin( 1
n+1) for all n

satisfies the conditions of Theorem 3.1, so the associated terraced matrix
M(a) is normaloid. The same conclusion applies when an = ln(1+ 1

n+1)

or an = arctan( 1
n+1) for all n. It has not yet been determined whether

or not these operators are hyponormal, although they are known to be
posinormal (see [13, Corollary 2.2]).

Example 3.3. The terraced matrix associated with the sequence de-
fined by a0 = 0.51 and an = 1

n+1 for all n ≥ 1 is normaloid but not

hyponormal (see [10, Example 3]). We note that this example does not
satisfy condition (3) of Theorem 2.6.

Now we turn our attention to necessary conditions for a terraced
matrix to be normaloid and spectraloid.

Theorem 3.4. Assume that a = {an} is a decreasing sequence that
converges to 0 and that {(n + 1)an} converges to L < +∞. (a) If

a0 + a1 +
√

(a0 − a1)2 + a21 > 4L, then the terraced matrix M(a) is
not spectraloid (and hence not normaloid). (b) If

∑∞
k=0 a

2
k > 4L2, then

M(a) is not normaloid.

Proof. (a) It is easy to see that if T is the matrix [tmn] with t00 = a0,
t10 = t11 = a1, and tmn = 0 for all other values of m,n, then W (T ) ⊂
W (M(a)). It follows from [2] (see also [3, page 113]) that W (T ) is the
closed elliptical disk bounded by the curve

(x− a0+a1
2 )2

(a0 − a1)2 + a21
+

y2

a21
=

1

4
;

since the major axis has length
√

(a0 − a1)2 + a21, it follows that ω(M(a))

≥ ω(T ) = a0+a1
2 +

√
(a0−a1)2+a21

2 > a0. When L > 0,

σ(M(a)) = {λ : |λ− L| ≤ L} ∪ {an : n = 0, 1, 2, ...},
so r(M(a)) = sup{2L, a0}, and the inequality ω(M(a)) > r(M(a))
follows from our hypothesis. When L = 0, M(a) is compact and
r(M(a)) = a0, so ω(M(a)) > r(M(a)). (b) Since ||M(a)||2 ≥

∑∞
k=0 a

2
k
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and r(M(a)) = sup{a0, 2L}, it follows from our hypothesis that ||M(a)||
> r(M(a)) and hence M(a) cannot be normaloid.

Example 3.5. If an = n+2
(n+1)2

for all n, then 0 < an ≤ 2
n+1 for all

n, so M(a) is bounded and ||M(a)|| ≤ 2||C|| = 4. One easily verifies
that {an} is strictly decreasing and L = 1. Since

∑∞
k=0 a

2
k > a20 = 4 =

4L2, M(a) is not normaloid (and hence also not hyponormal). Since

a0+a1+
√

(a0 − a1)2 + a21 =
11+

√
34

4 > 4 = 4L, M(a) is not spectraloid.
We note that {an} satisfies the hypothesis of [13, Theorem 2.1], so M(a)
is posinormal.

In contrast, we point out that if U is the unilateral shift and M :≡
M(a) is the terraced matrix from Example 3.5, then U∗MU is the ter-
raced matrix associated with sequence an = n+3

(n+2)2
, which is hyponormal

(see [13, Example 2.2]). This example illustrates that even though M
fails to be normaloid, spectraloid, and hyponormal, these failures may
not be inherited by U∗MU (see [12]).

Corollary 3.6. Assume that a = {an} is a strictly decreasing se-
quence that converges to 0 and that {(n + 1)an} converges to L with
0 < L < +∞. (a) For M(a) to be spectraloid, it is necessary that

a0 + a1 +
√

(a0 − a1)2 + a21 ≤ 4L.

(b) For M(a) to be normaloid, it is necessary that
∑∞

k=0 a
2
k ≤ 4L2.

Corollary 3.7. If 0 < k < z ≈ 0.521, where z is the only positive
zero of y = 16x4+16x3−5x2−4x, then Ck is not spectraloid (and hence
not normaloid).

Corollary 3.8. If 0 < k < (5 − π2

6 )−1/2 ≈ 0.5459, then Ck is not
normaloid.

With a little patience, the estimate in the preceding corollary can
be improved somewhat. For example, when 0 < k ≤ 0.566, it can be

verified that
∑∞

n=0
1

(k+n)2
>

∑9
n=0

1
(k+n)2

+ π2

6 −
∑10

n=1
1
n2 > 4, so Ck is

not normaloid for those values of k.

Corollary 3.9. If p > 1, then Mp is not spectraloid and not nor-
maloid.

We note that the result of Corollary 3.9 appears in [9], albeit with
a factor of 1

2 missing from the supporting calculation there. We also
note that Theorem 3.4 does not cover Aα for 0 < α < 1, since these
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are not terraced matrices. However, it was shown in [8] that Aα is not
spectraloid and not normaloid for these values of α.

The following theorem summarizes what we know about Ck in terms
of the topics of this section.

Theorem 3.10. Ck is spectraloid and normaloid for k ≥ 1, but Ck

is not spectraloid for 0 < k < z ≈ 0.521, and Ck is not normaloid for
0 < k ≤ 0.566.

Proof. The first assertion follows from the fact that Ck is hyponormal
for k ≥ 1, and the subsequent assertions are justified by Corollary 3.7
and the comment following Corollary 3.8.

4. Conclusion

In closing, we are reminded that the question of dominance for Ck

is unresolved for 1
2 ≤ k < 1, although it is known that these operators

are not hyponormal. Similarly, the more general question of dominance
for the terraced matrix M(a) when L < a0 ≤ 2L or a1 < a0 ≤ L for
0 < L < +∞ has not yet been settled. In view of the results of the
preceding section, it is worth noting that dominant operators are not
necessarily normaloid. For now, the question of whether or not there
exists a dominant terraced matrix that is not hyponormal remains open.
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