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PERIODIC SOLUTIONS OF VOLTERRA EQUATIONS

Sung Kyu Choi*, Namjip Koo**, Yun Hei Yeo***,
and ChanMi Yun****

Abstract. We study the existence of periodic solutions of Volterra
equations by using the limiting equations and contraction map-
pings.

1. Introduction

Miller [7] studied forced oscillations in a nonlinear system of Volterra
integral equations of the form

x1(t) = f1(t)−
∫ t

0
a1(t− s)g1(s, x1(s), x2(s))ds

−
∫ t

0
a2(t− s)g2(s, x1(s), x2(s))ds,

x2(t) = f2(t)−
∫ t

0
a2(t− s)g1(s, x1(s), x2(s))ds

−
∫ t

0
a1(t− s)g2(s, x1(s), x2(s))ds.

(1.1)

where the functions fi(t) and gi(t, x1, x2), i = 1, 2, are asymptotically al-
most periodic in t. (1.1) arises in a natural way from the initial boundary
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value problem:

ut = uxx, t > 0, 0 < x < π,

u(0, x) = F (x), 0 < x < π,

ux(t, 0) = g1(t, u(t, 0), u(t, π)), t > 0,

ux(t, π) = −g2(t, u(t, 0), u(t, π), t > 0.

(1.2)

The boundary conditions in this diffusion problem (1.2) are motivated
by the theory of superfluidity of liquid helium [7]. Also, see [6].

Burton and Furumochi [1] studied the existence of periodic solutions
of

x(t) = a(t)−
∫ t

0
D(t, s, x(s))ds, t ∈ R+ = [0,∞), (1.3)

and its limiting equation

x(t) = p(t)−
∫ t

−∞
P (t, s, x(s))ds, t ∈ R = (−∞,∞), (1.4)

by using techniques on limiting equations, Liapunov functions, the the-
ory of minimal solutions, and contraction mappings. Also, they inves-
tigated the existence of almost periodic solutions of (1.3) and (1.4) in
[3].

Furumochi [5] obtained discrete analogues of the results in [1], that is,
he obtained the existence of periodic solution of the Volterra difference
equations

x(n + 1) = a(n)−
n∑

k=0

D(n, k, x(k)), n ∈ Z+, (1.5)

and

x(n + 1) = p(n)−
n∑
−∞

P (n, k, x(k)), n ∈ Z. (1.6)

For the asymptotic property of linear Volterra difference equations, see
[4].

In this paper, we investigate the existence of bounded periodic solu-
tions of (1.3) and (1.4). This study complements [1].
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2. Main Results

We are concerned with systems of Volterra equations

x(t) = a(t)−
∫ t

0
D(t, s, x(s))ds, t ∈ R+ = [0,∞), (2.1)

x(t) = a(t)−
∫ t

−∞
D(t, s, x(s))ds, t ∈ R = (−∞,∞), (2.2)

and

x(t) = p(t)−
∫ t

−∞
P (t, s, x(s))ds, t ∈ R, (2.3)

where a : R → Rn, p : R → Rn, D : R × R × Rn → Rn, P :
R× R× Rn → Rn are continuous, and

p(t + T ) = p(t), q(t) := a(t)− p(t) → 0 as t →∞, (2.4)

where T > 0 is a constant,

P (t+T, s+T, x) = P (t, s, x), Q(t, s, x) := D(t, s, x)−P (t, s, x), (2.5)

and for any J > 0 there are continuous functions PJ : R×R→ R+ and
QJ : R× R→ R+ such that

PJ(t + T, s + T ) = PJ(t, s) if t, s ∈ R,

|P (t, s, x)| ≤ PJ(t, s) if t, s ∈ R and |x| ≤ J,

where | · | denotes the Euclidean norm of Rn, and |Q(t, s, x)| ≤ QJ(t, s)
if t, s ∈ R and |x| ≤ J ,

∫ t

−∞
PJ(t + τ, s)ds → 0 uniformly for t ∈ R as τ →∞ (2.6)

∫ t

0
PJ(t, s)ds → 0 as t →∞ (2.7)

or ∫ t

−∞
QJ(t, s)ds → 0 as t →∞ (2.8)

and ∫ t

−∞
QJ(t + τ, s)ds → 0 uniformly for t ∈ R as τ →∞.

First we obtain a relation between solution of (2.2) and

x(t) = p(t + σ)−
∫ t

−∞
P (t + σ, s + σ, x(s))ds, t ∈ R, (2.9)
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where 0 ≤ σ < T.

Theorem 2.1. Under the assumptions (2.4), (2.5), (2.6) and (2.8),
we suppose that (2.2) has an R-bounded solution x(t) with an initial
time in R. Let (sk) be a sequence in R with sk → ∞ as k → ∞.
Then the sequence (xk(t)) converges to an R-bounded solution y(t) of
(2.9) uniformly on any compact subset of R as k → ∞, where xk(t) :=
x(t + sk), t ∈ R.

Proof. Since x(t) is R-bounded, the set{xk(t) : t ∈ R} is uniformly
bounded on R. From (2.4), (2.5), and (2.8) we deduce that x(t) is
uniformly continuous on R. Since xk(t) is obtained by an sk-translation
to the left of x(t), the set {xk(t) : t ∈ R} is equicontinuous. By the
Ascoli’s theorem, the sequence (xk(t)) converges to some R-bounded
continuous function y(t) uniformly on any compact subset of R as k →
∞.

Now, we show that y(t) satisfies (2.9) on R. For any k ∈ N, let νk

be an integer with νkT ≤ sk < νk+1T . Let σk = sk − νkT . By taking a
subsequence if necessary, we may assume that (σk) converges to some σ
with 0 ≤ σ < T . From (2.2), we have

xk(t) = x(t + sk)

= a(t + sk)−
∫ t+sk

−∞
D(t + sk, s, x(s))ds

= p(t + σk) + q(t + sk)−
∫ t+sk

−∞
P (t + σk, s + σk, x(s + sk))ds

−
∫ t+sk

−∞
Q(t + sk, s, x(s))ds.

(2.10)

Note that p(t + σk) → p(t + σ) and q(t + sk) → 0 as k →∞. Let J > 0
be a number with |x| ≤ J . From (2.6), we obtain that for any ε > 0
there exists a τ > 0 such that∫ t

−∞
PJ(t + τ, s)ds < ε, t ∈ R. (2.11)

In view of (2.8) we have

lim sup
k→∞

|
∫ t+sk

−∞
Q(t + sk, s, x(s))ds|

≤ lim sup
k→∞

∫ t+sk

−∞
|Q(t + sk, s, x(s))|ds

= 0.

(2.12)
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Also,

lim sup
k→∞

|
∫ t+sk

−∞
P (t + σk, s + σk, x(s + sk))ds

−
∫ t

−∞
P (t + σ, s + σ, y(s))ds|

≤ lim sup
k→∞

|
∫ t+sk

t
[P (t + σk, s + σk, xk(s))

− P (t + σ, s + σ, y(s))]ds|

+ lim sup
k→∞

∫ t

−∞
PJ(t + σk, s + σk)ds +

∫ t

−∞
PJ(t + σ, s + σ)ds

< ε + ε = 2ε,

(2.13)

by (2.6) and (2.11). Hence it follows from (2.12) and (2.13) that

y(t) = p(t + σ)−
∫ t

−∞
P (t + σ, s + σ, y(s))ds, t ∈ R,

by letting k →∞ in (2.10). This completes the proof.

Definition 2.2. A function f : R → Rn is called asymptotically T -
periodic, T > 0 is a constant, if f = g + h, where g is T -periodic, i.e,
g(t + T ) = g(t) for all t ∈ R, and limt→∞ h(t) = 0.

Theorem 2.3. Suppose that (2.4), (2.5), (2.6) and (2.8). If (2.3) has
a unique R-bounded solution x0(t) on R, then the following hold:

(i) x0(t) is T -periodic.
(ii) Any R-bounded solution x(t) of (2.2) with an initial time in R is

asymptotically T-periodic and approaches to x0(t) as t →∞.

Proof. (i) Let x1(t) = x0(t + T ), t ∈ R. We show that x1(t) = x0(t)
for all t ∈ R. Since x0(t) is a unique R-bounded solution of (2.2) on R,
x1(t) is also an R-bounded solution of (2.2) on R. From the uniqueness
of solutions, we have x1(t) = x0(t) for all t ∈ R.

(ii) We show that x(t) → x0(t) as t →∞. Let xk(t) = x(t + sk) with
sk = kT . Then, by Theorem 2.1,

xk(t) → y(t)

uniformly on any compact subset of R as k → ∞, where y(t) is an R-
bounded solution of (2.9) with 0 ≤ σ < T , and thus is an R-bounded
solution of (2.2) when σ = 0. Also, y(t) = x0(t) from the uniqueness of
solutions. Thus x(t) = x0(t)+ϕ(t), where limt→∞ ϕ(t) = 0. This implies
that x(t) is asymptotically T -periodic. This completes the proof.
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Theorem 2.4. [1] Suppose that (2.4), (2.5) and (2.6) with q(t) ≡ 0
and Q(t, s, x) ≡ 0. Assume that for any J > 0 there exists a continuous
function LJ : R× R→ R+ such that

|P (t, s, x)− P (t, s, y)| ≤ LJ(t, s)|x− y| (2.14)

when t, s ∈ R and |x|, |y| ≤ J . Let

λJ := sup
t∈R

∫ t

−∞
LJ(t, s)ds < 1

and

λ := sup
J>0

λJ < 1. (2.15)

Then

(i) (2.3) has a unique R-bounded T -periodic solution on R.

(ii) Any R-bounded solution of (2.3) with initial time t0 ∈ R and
bounded continuous initial function ϕ : (−∞, t0) → Rn approaches to
the T -periodic solution.

Consider the linear Volterra equation

x(t) = p(t)−
∫ t

−∞
P (t, s)x(s)ds, t ∈ R, (2.16)

where p : R→ Rn and P : R× R→ R are continuous.

Theorem 2.5. [1] If

b(t) :=
∫ t

−∞
|P (t, s)|ds < 1, t ∈ R (2.17)

holds, then for any t0 ∈ R and any bounded continuous function ϕ :
(−∞, t0) → Rn, the solution x(t) = x(t, t0, ϕ) of (2.16) satisfies

|x(t)| ≤ X(t) := max
{

sup
t0≤s≤t

B(s), sup
s≤t0

|ϕ(s)|, |x(t0+)|
}

, t ≥ t0,

where

B(s) :=
1

1− b(s)
sup

t0≤u≤s
|p(u)|, s ≥ t0.

Now, we obtain the periodicity and attractivity of solution of the linear
equation (2.16).
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Definition 2.6. The solution x(t) of (2.16) is said to be globally
attractive if

lim
t→∞[x(t)− y(t)] = 0

for any solution y(t) of (2.16).

Theorem 2.7. Suppose that p(t + T ) = p(t) and P (t + T, s + T ) =
P (t, s), t, s ∈ R. In addiction to (2.17), if b(t) is continuous, then (2.16)
has a unique R-bounded solution on R which is T -periodic and globally
attractive.

Proof. In view of Theorem 2.5, the solution x(t) of (2.16) satisfies

|x(t)| ≤ X(t), t ≥ t0, t0 ∈ R,

that is, x(t) is R-bounded. From Theorem 2.4, x(t) is T -periodic. Also,
x(t) is globally attractive by Theorem 2.4.

In (2.5), we let Q(t, s, x) = 0. So we consider

x(t) = a(t)−
∫ t

0
P (t, s, x(s))ds, t ∈ R+, (2.18)

where a : R+ → Rn is bounded continuous and P : R×R×Rn → Rn is
continuous.

Theorem 2.8. Suppose that (2.4), (2.5) and (2.6) with Q(t, s, x) ≡ 0.
Under the assumptions (2.14) and (2.15), the following hold:

(i) (2.18) has a unique R+-bounded solution x(t) on R+.
(ii) (2.3) has a unique T -periodic solution π(t) on R.
(iii) x(t) → π(t) as t →∞.

Proof. (i) Let B be the Banach space of all bounded continuous func-
tions ξ : R+ → Rn with

‖ξ‖ = sup
t≥0

|ξ(t)|.

Define H on B by

(Hξ)(t) := a(t)−
∫ t

0
P (t, s, ξ(s))ds.

Then we have

|(Hξ)(t)| ≤ |a(t)|+
∫ t

0
|P (t, s, ξ(s))|ds.

Thus, from (2.6), Hξ is bounded. It follows that H(B) ⊂ B.
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We show that H is a contraction. To do this we let ξ1, ξ2 ∈ H with
‖ξ1‖, ‖ξ2‖ ≤ J for some J > 0. Then

|(Hξ1)(t)− (Hξ2)(t)| ≤
∫ t

0
|P (t, s, ξ1(s))− P (t, s, ξ2(s))|ds

≤
∫ t

0
LJ(t, s)|ξ1(s)− ξ2(s)|ds

≤ λJ‖ξ1 − ξ2‖
< λ‖ξ1 − ξ2‖,

by (2.14) and (2.15). This implies that H is a contraction. Hence H has
a unique fixed point x(t) of H by the Contraction Mapping Principle.

(ii) Let x(t) denote again R-extension of the given x(t) obtain by
defining {

x(t) = x(0) = a(0) for t < 0,

x(t) for 0 ≤ t < ∞.

For any k ∈ N, set xk(t) = x(t + kT ), t ∈ R. In view of Theorem 2.4,
(2.3) has a unique T -periodic solution, say π(t) in R. Therefore π(t) is
a unique R-bounded solution of (2.3) by Theorem 2.1.

(iii) We can deduce that x(t)−π(t) → 0 as k →∞ since we can show
that xk → π(t) as k →∞ uniformly on [0, T ] as in the proof of Theorem
2.1. This proves the theorem.
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