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PERIODIC SOLUTIONS OF VOLTERRA EQUATIONS

SunGg Kyu Cuaor*, NamJip Koo**, YuN HEI YEO***,
AND CHANMI YUN****

ABSTRACT. We study the existence of periodic solutions of Volterra
equations by using the limiting equations and contraction map-

pings.

1. Introduction

Miller [7] studied forced oscillations in a nonlinear system of Volterra
integral equations of the form

n®) = fil)= [t s (s.a(s)a(s)ds
— / as(t — s)ga(s, 1(s), za(s))ds,

0. (1.1)

2a®) = falt)= [ aalt = s)an (5.1 (5) o)) ds
— /0 ay(t — s)ga(s, r1(s), za(s))ds.

where the functions f;(t) and g;(t, 1, z2),7 = 1,2, are asymptotically al-
most periodic in ¢. (1.1) arises in a natural way from the initial boundary
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value problem:

Up = Ugy, t>0 0<z<m,
u(0,x) = F(x), O<z<m,
ug(t,0) = g1(t, u(t,0),u(t, 7)), t >0, (1.2)
Uy (t,m) = —ga(t, u(t,0),u(t, ), t>0.

The boundary conditions in this diffusion problem (1.2) are motivated
by the theory of superfluidity of liquid helium [7]. Also, see [6].

Burton and Furumochi [1] studied the existence of periodic solutions
of

z(t) = a(t) —/0 D(t,s,x(s))ds, t € RT = [0, 00), (1.3)

and its limiting equation

x(t) = p(t) — / P(t,s,x(s))ds, t € R = (—00,00), (1.4)

—00

by using techniques on limiting equations, Liapunov functions, the the-
ory of minimal solutions, and contraction mappings. Also, they inves-
tigated the existence of almost periodic solutions of (1.3) and (1.4) in
3].

Furumochi [5] obtained discrete analogues of the results in [1], that is,
he obtained the existence of periodic solution of the Volterra difference
equations

z(n+1) =a(n) = > _ D(n,k,z(k)), n € Z*, (1.5)
k=0
and
z(n+1) =p(n) =Y _ P(n,k,x(k)), n€Z (1.6)

For the asymptotic property of linear Volterra difference equations, see
[4].

In this paper, we investigate the existence of bounded periodic solu-
tions of (1.3) and (1.4). This study complements [1].
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2. Main Results

We are concerned with systems of Volterra equations

z(t) = a(t) —/0 D(t,s,x(s))ds, t € RT = [0, 00), (2.1)

z(t) = a(t) — / D(t,s,xz(s))ds, t € R = (—00,0), (2.2)
and

(1) = p(t) — /_ P(t. s, (s))ds, t € R, (2.3)

where a : R - R*", p: R - R*, D : RxRxR" - R?, P :
R x R x R” — R" are continuous, and

p(t+T)=p(t), q(t):=a(t)—p(t) — 0ast — oo, (2.4)
where T" > 0 is a constant,

P(t+T,s+T,z) = P(t,s,z), Qt, s,x):=D(ts,x)—P(ts,z), (2.5)
and for any J > 0 there are continuous functions P; : R x R — R* and
Qs :R xR — RT such that

Pyt+T,s+T) = Py(t,s)ift,s € R,
|P(t,s,z)| < Pj(t,s)ift,s € Rand |z| < J,
where | - | denotes the Euclidean norm of R™, and |Q(¢, s, z)| < Qs(t, )
ift,s € R and |z| < J,

t
/ Pjy(t+7,5)ds — 0 uniformly fort € Rast — oo (2.6)

t
/ Py(t,s)ds — 0ast — oo (2.7)

0

or .
/ Qs(t,s)ds - 0ast — oo (2.8)

and

t
/ Qy(t+7,s)ds — 0 uniformly fort € Ras7T — co.
—0o0

First we obtain a relation between solution of (2.2) and

z(t) =p(t+o)— /t P(t+o,s+0,2(s))ds, t € R, (2.9)

—0o0
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where 0 <o < T.

THEOREM 2.1. Under the assumptions (2.4), (2.5), (2.6) and (2.8),
we suppose that (2.2) has an R-bounded solution x(t) with an initial
time in R. Let (s;) be a sequence in R with s — oo as k — 0.
Then the sequence (z(t)) converges to an R-bounded solution y(t) of
(2.9) uniformly on any compact subset of R as k — oo, where xy(t) :=
x(t+ s), t € R.

Proof. Since x(t) is R-bounded, the set{zy(t) : ¢ € R} is uniformly
bounded on R. From (2.4), (2.5), and (2.8) we deduce that x(t) is
uniformly continuous on R. Since z () is obtained by an si-translation
to the left of x(t), the set {zx(¢t) : t € R} is equicontinuous. By the
Ascoli’s theorem, the sequence (zx(t)) converges to some R-bounded
continuous function y(¢) uniformly on any compact subset of R as k —
0.
Now, we show that y(t) satisfies (2.9) on R. For any k € N, let v
be an integer with ;T < sp < vp1T. Let o = s — 1. By taking a
subsequence if necessary, we may assume that (oj) converges to some o
with 0 < o < T. From (2.2), we have

xp(t) = z(t + s)

t+sk
= a(t + sg) —/ D(t + sg,s,x(s))ds

t+sk (2.10)
=p(t + o) + q(t + sk) —/ P(t+ ok, s+ o, x(s + sx))ds

—00

t+sk
—/ Q(t + sk, s,x(s))ds.

—0o0
Note that p(t + o) — p(t + o) and q(t + sx) — 0 as k — oo. Let J >0
be a number with |z| < J. From (2.6), we obtain that for any € > 0
there exists a 7 > 0 such that

t
/ Pj(t+71,8)ds < e, t €R. (2.11)
—00
In view of (2.8) we have
t+sg
lim sup | Q(t + sk, 8, 2(s))ds|
k—oo J—o0
t+sg 2.12
< lim sup / |Q(t + sk, 5,2(s))|ds ( )
k—oo J—00

=0.
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Also,
t+sk
lim sup | P(t+ ok, s+ ok, (s + si))ds

k—o0 —00

t
- / P(t+ 0,5+ 0,y(s))ds

t+sg
< lim sup | [P(t + ok, s + ok, xk(s)) (2.13)

k—oo Jt
— P(t+ 0,5+ 0,y(s))|ds|
t t
+ lim sup/ Pj(t+0k,3+0k)d8+/ P;(t+o0,s+0)ds

k—o0 J—00 —00

< e+ e =2¢,

by (2.6) and (2.11). Hence it follows from (2.12) and (2.13) that

y(t) =plt+o)— /_ P(t+o0,s+0,y(s))ds, t € R,

by letting & — oo in (2.10). This completes the proof. O

DEFINITION 2.2. A function f : R — R” is called asymptotically T -
periodic, T > 0 is a constant, if f = g+ h, where g is T-periodic, i.e,
g(t+T) =g(t) for all t € R, and lim;_, h(t) = 0.

THEOREM 2.3. Suppose that (2.4), (2.5), (2.6) and (2.8). If (2.3) has
a unique R-bounded solution xy(t) on R, then the following hold:

(i) xo(t) is T-periodic.

(ii)) Any R-bounded solution x(t) of (2.2) with an initial time in R is
asymptotically T-periodic and approaches to xy(t) as t — oo.

Proof. (i) Let z1(t) = zo(t +T'), t € R. We show that z1(t) = xo(t)
for all ¢ € R. Since zo(t) is a unique R-bounded solution of (2.2) on R,
x1(t) is also an R-bounded solution of (2.2) on R. From the uniqueness
of solutions, we have z1(t) = zo(t) for all t € R.

(ii) We show that z(t) — zo(t) as t — co. Let zx(t) = x(t + s) with
s = kT. Then, by Theorem 2.1,

zi(t) — y(t)
uniformly on any compact subset of R as k& — oo, where y(t) is an R-
bounded solution of (2.9) with 0 < ¢ < T, and thus is an R-bounded
solution of (2.2) when o = 0. Also, y(t) = zo(t) from the uniqueness of
solutions. Thus z(t) = zo(t)+¢(t), where lim;_,~ ¢(t) = 0. This implies
that x(t) is asymptotically T-periodic. This completes the proof. O
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THEOREM 2.4. [1] Suppose that (2.4), (2.5) and (2.6) with q(t) =0
and Q(t,s,z) = 0. Assume that for any J > 0 there exists a continuous
function Ly : R x R — Rt such that

IP(t,5,2) — P(t,5,9) < Ly(t, s)la — y| (2.14)
when t,s € R and |z|,|y| < J. Let

t
Ay = sup/ Ly(t,s)ds <1

teR J—o0
and
Ai=supAy < L. (2.15)
J>0
Then

(i) (2.3) has a unique R-bounded T'-periodic solution on R.

(ii) Any R-bounded solution of (2.3) with initial time ty € R and
bounded continuous initial function ¢ : (—o0,ty) — R™ approaches to
the T-periodic solution.

Consider the linear Volterra equation

¢
(1) = p(t) — / P(t, 5)z(s)ds, t € R, (2.16)
—0o0
where p: R — R"™ and P : R x R — R are continuous.

THEOREM 2.5. [1] If

t

b(t) = / IP(t, 5)|ds < 1, € R (2.17)
—0o0

holds, then for any ty € R and any bounded continuous function ¢ :

(—o0,tg) — R™, the solution x(t) = x(t,to, p) of (2.16) satisfies

lz(t)] < X(t) == max{ sup B(s), sup |p(s)|, ]a:(to—k)\} , t > 1o,
to<s<t s<tp

where
1

B(s) = ——— > 1.
(s) 1= 0s) o Ip(u)l, s > to

Now, we obtain the periodicity and attractivity of solution of the linear
equation (2.16).
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DEFINITION 2.6. The solution z(¢) of (2.16) is said to be globally
attractive if

lim [z(t) — y(t)] = 0

t—o0

for any solution y(t) of (2.16).

THEOREM 2.7. Suppose that p(t +T) = p(t) and P(t+T,s+T) =
P(t,s),t,s € R. In addiction to (2.17), if b(t) is continuous, then (2.16)
has a unique R-bounded solution on R which is T-periodic and globally
attractive.

Proof. In view of Theorem 2.5, the solution z(t) of (2.16) satisfies
lz(t)| < X(t), t > to,to € R,

that is, z(t) is R-bounded. From Theorem 2.4, x(t) is T-periodic. Also,
x(t) is globally attractive by Theorem 2.4. O

In (2.5), we let Q(t,s,z) = 0. So we consider
t
z(t) = a(t) — / P(t,s,z(s))ds,t € RT, (2.18)
0
where a : RT — R" is bounded continuous and P : R x R x R” — R" is

continuous.

THEOREM 2.8. Suppose that (2.4), (2.5) and (2.6) with Q(t, s, xz) = 0.
Under the assumptions (2.14) and (2.15), the following hold:

(i) (2.18) has a unique R*-bounded solution x(t) on RT.
(ii) (2.3) has a unique T-periodic solution 7(t) on R.
(iii) z(t) — w(t) ast — oc.

Proof. (i) Let B be the Banach space of all bounded continuous func-
tions € : RT — R™ with

1€]] = sup [£(2)]-
t>0

Define H on B by
t

(HE)(t) = alt) - /0 P(t, 5,£(s))ds.

Then we have
t
(W) < 1)+ [ 1P(t.s. ()l
Thus, from (2.6), H¢ is bounded. It follows that H(B) C B.
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We show that H is a contraction. To do this we let &1,& € H with
l€1]]5 [|62]] < J for some J > 0. Then

[(H&)(t) — (HE)()] < /Ot [P(t,5,61(s)) — P(t, s,82(s))lds

< /0 Ly(t, 8)[61(s) — Ea(s)]ds

< A& =&
< )‘”§1_€2H7

by (2.14) and (2.15). This implies that H is a contraction. Hence H has
a unique fixed point z(t) of H by the Contraction Mapping Principle.

(ii) Let z(t) denote again R-extension of the given x(t) obtain by
defining

z(t) = z(0) = a(0) fort <0,
x(t) for 0 <t < oo.

For any k € N, set zx(t) = z(t + kT'), t € R. In view of Theorem 2.4,
(2.3) has a unique T-periodic solution, say 7 (¢) in R. Therefore m(t) is
a unique R-bounded solution of (2.3) by Theorem 2.1.

(iii) We can deduce that z(t) —m(t) — 0 as k — oo since we can show
that x — 7(t) as k — oo uniformly on [0, 7] as in the proof of Theorem
2.1. This proves the theorem.

O
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