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PROPERTIES OF GENERALIZED
BIPRODUCT HOPF ALGEBRAS

Junseok Park* and Wansoon Kim**

Abstract. The biproduct bialgebra has been generalized to generalized
biproduct bialgebra B×L

H D in [5]. Let (D, B) be an admissible pair and let

D be a bialgebra. We show that if generalized biproduct bialgebra B ×L
H D

is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity
idB has an inverse in the convolution algebra Homk(B, B). We show that if
D is a Hopf algebra with antipode sD and sB ∈ Homk(B, B) is an inverse of
idB then B×L

H D is a Hopf algebra with antipode s described by s(b×L
H d) =

Σ(1B ×L
H sD(b−1 · d))(sB(b0) ×L

H 1D). We show that the mapping system

B ¿ΠB
jB

B ×L
H D ÀπD

iD
D (where jB and iD are the canonical inclusions,

ΠB and πD are the canonical coalgebra projections) characterizes B ×L
H D.

These generalize the corresponding results in [6].

The usual smash product A#H of an H-module algebra A and a Hopf

algebra H has been defined in [7] or [8] and Molnar constructed a smash

coproduct C]H of an H-comodule coalgebra C and a Hopf algebra H in [4].

Definition 1 [1]. Let H be a bialgebra over a field k and C be a left H-

comodule coalgebra. Let E be a left H-module coalgebra. The generalized

smash coproduct C]L
HE is defined to be C ⊗k E as a vector space with

comultiplication given by

∆(c]L
He) = Σ(c1]

L
Hc2,−1 · e1)⊗ (c2,0]

L
He2)

and counit

ε(c]L
He) = εC(c)εE(e)
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for all c ∈ C , e ∈ E.

It is straightforward to show that πC : C]E −→ C, c]e 7−→ c εE(e) and

πE : C]E −→ E, c]e 7−→ εC(c)e are coalgebra surjections since C is a left

H-comodule coalgebra and E is a left H-module coalgebra.

Definition 2 [2]. Let H be a bialgebra over a field k and A be a left

H-module algebra. Let D be a left H-comodule algebra. The generalized

smash product A#L
HD is defined to be A ⊗k D as a vector space, with

multiplication given by

(a#L
Hd)(b#L

He) = Σa(d−1 · b)#L
Hd0e

and unit 1A ⊗ 1D for all a, b ∈ A and d, e ∈ D.

It is straightforward to show that iA : A −→ A#L
HD, a 7−→ a#L

H1D

and iD : D −→ A#L
HD, d 7−→ 1A#L

Hd are algebra maps since A is a left

H-module algebra and D is a left H-comodule algebra.

Definition 3 [5]. Let H be a bialgebra over a field k. Let B be a left H-

module algebra and a left H-comodule coalgebra. Let D be a left H-comodule

algebra and a left H-module coalgebra. The generalized biproduct B ×L
H D

of B and D is defined to be B#L
HD as an algebra and B]L

HD as a coalgebra.

Example 1. A bialgebra H is a left H-comodule algebra via ∆H because

∆H is an algebra map. H is a left H-module coalgebra via mH because mH

is a coalgebra map. The generalized biproduct B×L
H H is a biproduct B×H

in [3].

Definition 4. Let H be a bialgebra over k. B is called a left-left H-

crossed module crossed algebra if B is a left H-module algebra and is a left

H-comodule coalgebra such that εB(h · b) = εH(h)εB(b), b ∈ B, h ∈ H

and ψB(1B) = 1H ⊗ 1B . D is called a left-left H-crossed comodule crossed

algebra if D is a left H-comodule algebra and a left H-module coalgebra

such that h · 1D = εH(h)1D, h ∈ H, Σd−1εD(d0) = εD(d)1H , d ∈ D and

εD(1D) = 1k.
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Example 2. Let B be a left H-module algebra, a left H-comodule coal-

gebra, a left H-module coalgebra and a left H-comodule algebra. Then B is

a left-left H-crossed module crossed algebra. Let the bialgebra D be a left

H-comodule algebra, a left H-module coalgebra, a left H-comodule coalge-

bra and a left H-module algebra. Then D is a left-left H-crossed comodule

crossed algebra.

The followings generalize the corresponding results in [6].

Proposition 1. Let H be a bialgebra over k. Suppose B is a left-left

H-crossed module crossed algebra and D is a left-left H-crossed comodule

crossed algebra. Then the followings are equivalent;

(1) (B×L
HD, mB#L

HD, ηB#L
HD, ∆B]L

HD, εB]L
HD) is a bialgebra.

(2) εB and εD are algebra maps, ∆B(1B) = 1B⊗1B , ∆D(1D) = 1D⊗1D,

and the identities

(i) Σ1B ×L
H (b−1 · d1)(b′−1 · d′1)⊗ b0(d2,−1 · b′0)×L

H d2,0d
′
2

= Σ1B ×L
H [b(d−1 · b′)]−1 · (d0,1d

′
1)⊗ [b(d−1 · b′)]0 ×L

H d0,2d
′
2.

(ii) Σ[b(d−1 · b′)]1 ×L
H 1D ⊗ [b(d−1 · b′)]2 ×L

H d0d
′

= Σb1b
′
1 ×L

H 1D ⊗ b2(d−1 · b′2)×L
H d0d

′

(iii) Σb′ ×L
H (b−1 · d)⊗ b0 ×L

H 1D

= Σ(b−1 · d)−1 · b′ ×L
H (b−1 · d)0 ⊗ b0 ×L

H 1D

hold for b, b′ ∈ B and d, d′ ∈ D.

Proof. From Theorem 1 of [5]. ¤

Definition 5. Let H be a bialgebra and suppose that B is a left-left

H-crossed module crossed algebra and D is a left-left H-crossed comodule

crossed algebra. In case (B×L
HD, mB#L

HD, ηB#L
HD, ∆B]L

HD, εB]L
HD) is a

bialgebra, we say the pair (D, B) is admissible.

Throughout we let H be a bialgebra over k. Suppose B is a left-left

H-crossed module crossed algebra and D is a left-left H-crossed comodule

crossed algebra.
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Theorem 1. Suppose that (D,B) is an admissible pair and that D is a

bialgebra.

(1) If B×L
H D is a Hopf algebra with antipode s, then D is a Hopf algebra

and the identity idB has an inverse in the convolution algebra Homk(B, B).

(2) If D is a Hopf algebra with antipode sD and sB ∈ Homk(B, B) is an

inverse of idB , then B×L
H D is a Hopf algebra with antipode s described by

s(b×L
H d) = Σ(1B ×L

H sD(b−1 · d))(sB(b0)×L
H 1D).

Proof. (1): Define πD : B ×L
H D → D, b ×L

H d 7→ εB(b)d, iD : D →
B ×L

H D, d 7→ 1B ×L
H d, jB : B → B ×L

H D, b 7→ b ×L
H 1D, ΠB :

B ×L
H D → B, b ×L

H d 7→ εD(d)b. Let sD = πD ◦ s ◦ iD. Then 1B ×L
H

(ΣsD(d1)d2) = 1B×L
H εD(d)1D. Therefore ΣsD(d1)d2 = εD(d)1D. Similarly,

Σd1sD(d2) = εD(d)1D. So D is a Hopf algebra with antipode sD. And

jB : B → B ×L
H D is an algebra homomorphism since B is a left H-module

algebra. We transfer the coalgebra structure of B to jB(B) = B ×L
H 1D via

the algebra isomorphism jB : B → B×L
HD and identify B with B×L

H1D. Let

π = iD◦πD and Π = jB◦ΠB . Let S ∈ Endk(B×L
H D) be defined by S = π∗s.

Then ∆(b×L
H 1D) = Σ(b1×L

H 1D)(b2×L
H 1D). So S(b×L

H 1D) = s(b×L
H 1D).

Therefore

Σ(b1×L
H 1D)S(b2×L

H 1D) = ε(b×L
H 1D)1B ×L

H 1D. (∗)
Thus S|B×L

H1D
is a right inverse of idB×L

H1D
∈ Homk(B ×L

H 1D, B ×L
H D).

Since (b×L
H1D)(1B×L

Hd) = b×L
Hd and ∆(1B×L

Hd) = Σ(1B×L
Hd1)(1B×L

Hd2),

we have S(b ×L
H d) = εD(d)S(b ×L

H 1D). So (S ◦ Π)(b ×L
H d) = S(b ×L

H d).

Therefore S ◦Π = S. Since (π ∗ε)(b×L
H d) = Σπ(b×L

H d), S ∗ id = π ∗s∗ id =

π ∗ ε = π in Endk(B ×L
H D). We have Σ[S(b1 ×L

H 1D)](b2 ×L
H 1D) = ε(b×L

H

1D)(1B×L
H 1D), and thus S|B×L

H1D
is a left inverse of idB×L

H1D
. To complete

the proof of (1) we need show that S(B×L
H 1D) ⊆ B×L

H 1D, that is, Π◦S = S

on B×L
H 1D. But since Π is a left B×L

H 1D-module homomorphism, applying

Π to the equation (∗) we see that Π ◦ (S |B×L
H1D

) is also a right inverse of

idB×L
H1D

. This means Π ◦ S = S on B ×L
H 1D.

(2): From Theorem 3 of [5]. ¤
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Definition 6. Let (D, B) be an admissible pair and suppose that A is

a bialgebra over k. Then

B ¿Π
j A Àπ

i D

is an admissible mapping system if the following conditions hold :

(a) Π ◦ j = idB , π ◦ i = idD,

(b) i and π are algebra maps and coalgebra maps, j is an algebra map,

and Π is a coalgebra map,

(c) Π is a D-bicomodule map (A is given the D-bimodule structure via

pullback along i and B is given the trivial D-bimodule structure),

(d) j(B) is a sub-D-bimodule of A and Π|j(B) is a D-bicomodule map

(A is given the D-bicomodule structure via pushout along π, B is given the

trivial D-bicomodule structure).

Lemma 1. Let (D,B) be an admissible pair and suppose that A is a

bialgebra over k.

B ¿Π
j A Àπ

i D

If i is an algebra map and π is a coalgebra map then

(1) A is a D-bimodule (A is given the D-bimodule structure via pullback

along i),

(2) B is a D-bimodule (B is given the trivial D-bimodule structure),

(3) A is a D-bicomodule (A is given the D-bicomodule structure via

pushout along π),

(4) B is a D-bicomodule (B is given the trivial D-bicomodule structure).

Proof. (1). Define A ⊗ D −→ A, a ⊗ d 7−→ a · d = ai(d). Then A is a

right D-module since i is an algebra map. Define D ⊗ A −→ A, d ⊗ a 7−→
d · a = i(d)a. Then A is a left D-module since i is an algebra map. For all

d, d′ ∈ D, a ∈ A, (d ·a) ·d′ = (i(d)a) ·d′ = i(d)ai(d′) = i(d)(a ·d′) = d ·(a ·d′).
Therefore A is a D-D-bimodule.

(2). Define B ⊗ D −→ B, b ⊗ d 7−→ b · d = εD(d)b. Then B is a right

D-module since εD is an algebra map. Define D ⊗ B −→ B, d ⊗ b 7−→
d · b = εD(d)b. Then B is a left D-module. For all d, d′ ∈ D, a ∈ A,
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(d ·b) ·d′ = (εD(d)b) ·d′ = εD(d)εD(d′)b = εD(d)(b ·d′) = d ·(b ·d′). Therefore

B is a D-D-bimodule.

(3). Define ρr : A −→ A ⊗ D, a 7−→ Σa1 ⊗ π(a2). Then (ρr ⊗ I) ◦ ρr =

(I ⊗ ∆) ◦ ρr. And ((I ⊗ εD) ◦ ρr)(a) = a ⊗ 1 for all a ∈ A. Therefore A

is a right D-comodule. Define ρl : A −→ D ⊗ A, a 7−→ Σπ(a1) ⊗ a2. Then

((I⊗ρl)◦ρl)(a) = ((∆⊗I)◦ρl)(a), and ((εD⊗I)◦ρl)(a) = 1⊗a for all a ∈ A.

Therefore A is a left D-comodule. And ((I ⊗ ρr) ◦ ρl)(a) = (ρl ⊗ I) ◦ ρr(a)

for all a ∈ A. Therefore A is a D-D-bicomodule.

(4). Define ρ′r : B −→ B ⊗D, b 7−→ b ⊗ 1D. For all b ∈ B, ((I ⊗∆D) ◦
ρ′r)(b)((ρ′r ⊗ I) ◦ ρ′r)(b) and ((I ⊗ εD) ◦ ρ′r)(b) = b ⊗ 1k. Therefore B is a

right D-comodule. Define ρ′l : B −→ D ⊗ B, b 7−→ 1D ⊗ b. Similarly B is

left D-comodule. And ((I ⊗ ρ′r) ◦ ρ′l)(b) = ((ρ′l ⊗ I) ◦ ρ′r)(b) for all b ∈ B.

Therefore B is a D-D-bicomodule. ¤

Theorem 2. Let (D, B) be an admissible pair. Then

B ¿ΠB
jB

B ×L
H D ÀπD

iD
D

is an admissible mapping system where iD : D −→ B×L
H D, d 7−→ 1B×L

H

d, jB : B −→ B ×L
H D, b 7−→ b×L

H 1D, ΠB : B ×L
H D −→ B, b×L

H d 7−→
εD(d)b and πD : B ×L

H D −→ D, b×L
H d 7−→ εB(b)d.

Proof. (a) By the definitions of mappings, ΠB ◦ jB = IB , πD ◦ iD = idD.

(b) The maps jB :−→ B×L
HD, b 7−→ b×L

H1D and iD : D −→ b×L
HD, d 7−→

1B ×L
H d are algebra maps since B is a left H-module algebra and D is a

left H-comodule algebra. The maps ΠB : B×L
H D −→ B, b×L

H d 7−→ εD(d)b

and πD : B ×L
H D −→ D, b ×L

H d 7−→ εB(b)d are coalgebra maps since B is

a left H-comodule coalgebra and D is a left H-module coalgebra. For all

d ∈ D, (∆B×L
HD ◦ iD)(d) = ((idD ⊗ idD) ◦∆D)(d) and (εB×L

HD ◦ iD)(d) =

εb×L
HD(1B ×L

H d) = εB(1B)εD(d) = 1kεD(d) = εD(d) by Proposition 1,

(2). Therefore iD is a coalgebra map. πD((a ×L
H d)(b ×L

H e)) = πD(a ×L
H

d)πD(b×L
H e) and πD(1B ×L

H 1D) = εB(1B)1D = 1k1D = 1D by Proposition

1, (2). Therefore πD is an algebra map.

(c). ΠB(d′ · (b×L
H d)) = d′ ·ΠB(b×L

H d) for all d, d′ ∈ D, b ∈ B. Therefore

ΠB is a left D-module map. ΠB((b ×L
H d) · d′) = ΠB(b ×L

H d) · d′ for all
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b ∈ B, d, d′ ∈ D. So ΠB is a right D-module map.

(d). Let ρl : jB(B) −→ D ⊗ jB(B), b ×L
H 1D 7−→ ΣπD((b ×L

H 1D)1) ⊗
(b ×L

H 1D)2 = 1D ⊗ (b ×L
H 1D) be the left sub-D-comodule structure map

of jB(B) = B ×L
H 1D. Let ρD : B −→ D ⊗ B, b 7−→ 1D ⊗ b be the left D-

comodule structure map of B. For all b×L
H1D ∈ jB(B), (ρB◦ΠB)(b×L

H1D) =

ρB(εD(1D)b) = ρB(1kb) = 1D ⊗ b = 1D ⊗ εD(1D)b = (I ⊗ ΠB)(1D ⊗ (b×L
H

1D)) = ((I⊗ΠB) ◦ρl)(b×L
H 1D). Hence ΠB |jB(B) is a left D-comodule map.

Let ρr : jB(B) −→ jB(B)⊗D, b×L
H1D 7−→ Σ(b×L

H1D)1⊗πD((b×L
H1D)2) =

(b ×L
H 1D) ⊗ 1D be the right sub-D-comodule structure map of jB(B). Let

ρ′B : B −→ B⊗D, b 7−→ b⊗ 1D be the right D-comodule structure map of

b. Similarly, ΠB |jB(B) is a right D-comodule map. Therefore ΠB |jB(B) is a

D-bicomodule map.

(e). For all b ×L
H d ∈ B ×L

H D, (jB ◦ ΠB) ∗ (iD ◦ πD)(b ×L
H d) = Σ(jB ◦

ΠB)((b×L
H d)1)(iD ◦ πD)((b×L

H d)2) = Σ(εH(b2,−1)εD(d1)b1 ×L
H 1D)(1B ×L

H

εB(b2,0)d2) = Σ(εH(εB(b2)1H)b1 ×L
H 1D)(1B ×L

H d) = b×L
H d = id(b×L

H d).

Therefore, (jB ◦ΠB) ∗ (iD ◦ πD) = id. ¤

Lemma 2. Let (D, B) be an admissible pair and let A be a bialgebra over

k. Suppose that B ¿Π
j A Àπ

i D is an admissible mapping system. Then

i(d)j(b) = j(b)i(d)

for all b ∈ B, d ∈ D.

Proof. i(d)j(b) = ((j ◦Π) ∗ (i ◦ π))(i(d)j(b))

= Σ(j ◦Π)(i(d1)j(b)1)(i ◦ π)(i(d2)j(b)2)

= Σ(j ◦Π)(d1 · j(b)1)i((π ◦ i)(d2)π(j(b)2))

= Σj(d1 ·Π(j(b))i(d2)i(1D)

= Σj(d1 · b)i(d2)

= Σj(εD(d1)b)i(d2)

= j(b)i(d)

for all b ∈ B, d ∈ D. ¤

Lemma 3. Let (D, B) be an admissible pair and let A be a bialgebra over

k. Suppose that B ¿Π
j A Àπ

i D is an admissible mapping system. Then
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Σj(d−1 · b′)i(d0) = j(b′)i(d)

for all b′ ∈ B, d ∈ D.

Proof. By the definition of admissible pair and Theorem 1, (2), εB and

εD are algebra maps. So εB(h · b) = εH(h)εB(b) and Σd−1εD(d0)

= εD(d)1H . By [5, Corollary 3], Σ(d−1 · b′×L
H 1D)⊗ (1B ×L

H d0) = (b′×L
H

1D)⊗ (1B ×L
H d). If we apply ΠB ⊗ πD to the two-side of the above, we get

Σd−1 · b′ ⊗ d0 = b′ ⊗ d. So Σj(d−1 · b′)i(d0) = j(b)i(d). ¤

Lemma 4. Let (D, B) be an admissible pair and let A be a bialgebra over

k. Suppose that B ¿Π
j A Àπ

i D is an admissible mapping system. Then

ΣΠ(a1)−1 · π(a2)⊗Π(a1)0 = Σπ(a1)⊗Π(a2)

where B −→ H⊗B, b 7→ Σb−1⊗b0 is the left H-comodule structure map.

Proof. First let a ∈ j(b). Then Π|j(B) is a right D-comodule map, ΣΠ(a1)⊗
π(a2) = Π(a)⊗1D. So, ΣΠ(a1)−1 ·π(a2)⊗Π(a1)0 = ΣΠ(a)−1 ·1D⊗Π(a)0 =

ΣεB(Π(a)−1)1D ⊗Π(a)0 = Σ1D ⊗ εB(Π(a)−1)

Π(a)0 = 1D⊗Π(a) = Σπ(a1)⊗Π(a2). From the observation that Π(aa′) =

Π(a)ε(d′) for all a′ = i(d′) ∈ i(D) and that A = j(B)i(D) for f is surjective,

we reduce the general case to the special case. ¤

Theorem 3. Let (D, B) be an admissible pair and let A be a bialgebra

over k. Suppose that B ¿Π
j A Àπ

i D is an admissible mapping system.

(1) There exists a unique algebra map f : B ×L
H D −→ A such that the

diagram

B ×L
H D

f

²²

B

jB

;;wwwwwwwww

j
$$HHHHHHHHHH D

iD

ccGGGGGGGGG

i
zzuuuuuuuuuu

A
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commutes. Furthermore the diagram

B ×L
H D

ΠB

{{ww
ww

ww
ww

w

f

²²

πD

##GG
GG

GG
GG

G

B D

A

Π

ddHHHHHHHHHH π

::uuuuuuuuuu

commutes and f is a bialgebra isomorphism.

(2) There exists a unique coalgebra map g : A −→ B×L
H D such that the

diagram

B ×L
H D

ΠB

{{ww
ww

ww
ww

w
πD

##GG
GG

GG
GG

G

B D

A

Π

ddHHHHHHHHHH

g

OO

π

::uuuuuuuuuu

commutes. Furthermore the diagram

B ×L
H D

B

jB

;;wwwwwwwww

j
$$HHHHHHHHHH D

iD

ccGGGGGGGGG

i
zzuuuuuuuuuu

A

g

OO

commutes and g is a bialgebra isomorphism.

Proof. For all b ∈ B, d ∈ D, (b ×L
H 1D)(1B ×L

H d) = b ×L
H d since D is a

left H-comodule algebra and B is a left H-module. If f : B ×L
H D −→ A

is an algebra map then first diagram commutes if and only if f(b ×L
H d) =

f(b×L
H1D)f(1B×L

Hd) = j(b)i(d) for all b ∈ B, d ∈ D. If g : A −→ B×L
HD is a

coalgebra map then third diagram commutes if and only if g(a) = I(g(a)) =

(jB ◦ΠB) ∗ (iD ◦ πD)(g(a)) = ΣΠ(a1)×L
H π(a2) for all a ∈ A by Theorem 2.
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Thus we have the uniqueness of f and g. Let f and g be defined as above.

Then f(g(a)) = f(ΣΠ(a1) ×L
H π(a2)) = Σj(Π(a1))i(π(a2)) = ((j ◦ Π) ∗ (i ◦

π))(a) = I(a) = a and g(f(b ×L
H d)) = g(j(b)i(d)) = ΣΠ((j(b)i(d))1) ×L

H

π((j(b)i(d))2) = Π(j(b))×L
H d = b×L

H d. So f and g are inverses. Thus the

proof will be complete once we show that f is an algebra map and g is a

coalgebra map. f(1B ×L
H 1D) = j(1B)i(1D) = 1A1A = 1A since i and j are

algebra maps. We need only show that f is multiplicative. From Lemma 2,

and Lemma 3, follow that f((b×L
H d)(b′×L

H d′)) = Σf(b(d−1 · b′)×L
H d0d

′) =

f(b ×L
H d)f(b′ ×L

H d′). And εB×L
HD(g(a)) = εA(a). We need only show that

g is comultiplicative. By Lemma 4,

Σ(g(a))1 ⊗ (g(a))2 = ∆B×L
HD(g(a))

= Σ(Π(a)1,1 ×L
H Π(a)1,2,−1 · π(a)2,1)⊗ (Π(a)1,2,0 ×L

H π(a)2,2)

= Σ(Π(a1)×L
H Π(a2)−1 · π(a3))⊗ (Π(a2)0 ×L

H π(a4))

= Σ(Π(a1)×L
H π(a2))⊗ (Π(a3)×L

H π(a4))

= Σg(a1)⊗ g(a2).

So g is a coalgebra map. This completes the proof. ¤
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