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RESTRICTION ESTIMATES FOR ARBITRARY
CONVEX CURVES IN R2

Boo-Yong Choi*

Abstract. We study the restriction estimate of Fourier transform
to arbitrary convex curves in R2 with no regularity assumption.
Assuming that the convex curve has the lower bound of curvatures,
we extend the restriction results from smooth convex curves to ar-
bitrary convex curves. Our work has been motivated by the lecture
notes of Terence Tao. The bilinear approach and geometric obser-
vations play an important role.

1. Introduction

Given a submanifold S of Rd and a smooth measure σ on S, we may
ask that for which values of p and q the a priori estimate of the form

(1.1) ‖ĝ‖Lq(S) ≤ Cp,q‖g‖Lp(Rd), g ∈ S(Rd)

holds. Here S(Rd) denotes the Schwartz class of rapidly decreasing
smooth functions. The estimate mentioned in (1.1) is known as the re-
striction theorem. Although it is possible to study the restriction prob-
lem for the several kinds of submanifolds of Rd, a unit sphere Sd−1 ⊂ Rd

has been considered as one of the typical models for the problem. More-
over the restriction conjecture for the unit sphere has been investigated
by many famous mathematicians. In a dual form the restriction conjec-
ture for the unit sphere Sd−1 of Rd, d ≥ 2, says that it has the estimate
of the form

(1.2) ‖f̂dσ‖Lq(Rd) ≤ Cp,q‖f‖Lp(Sd−1)

whenever q > 2d/(d− 1) and q ≥ (d + 1)p′/(d− 1), where p′ = p/(p− 1)
is the exponent conjugate to p and f̂dσ is the Fourier transform of the
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measure fdσ given by

f̂dσ(ξ) =
∫

Sd−1

e2πiξxf(x)dσ(x).

In a case where dimensions are higher than 3, the conjecture has not yet
been solved. However the restriction conjecture for the circle was com-
pletely settled down due to C. Fefferman [5] and A. Zygmund [12]. More
generally the restriction conjecture in two dimensions is still true for a
compact subset of the smooth curve with non-vanishing curvature(see
[7]). On the other hand it is not so difficult to show that it is impos-
sible to restrict the Fourier transform to some curves containing a line
segment. Therefore we may normally has a question : is it possible to
get the restriction theorems for either a smooth curve or a curve con-
taining a line segment? The purpose of this paper is to set up a new
geometric method to extend the restriction results from smooth convex
curves to arbitrary convex curves. In order to state our main result we
need to introduce some concepts and notation. Let K be a convex curve
on R2. Since there is a tangent at every point of K, there exists the
outward normal. We denote this by N : K → S1 which is a Gauss map
sending each point on the convex curve K to the outward normal. We
may assume that the convex curve K doesn’t contain a line segment
because otherwise it is impossible to restrict the Fourier transform to
the convex curve K. We shall define the curvature at each point of K.
Intuitively the curvature of a plane curve at a point P can be thought as
the curvature of a circle which approximates the curve most closely near
that point. The curvature of a circle is directly defined by the length of
its radius. The shorter the radius, the greater the curvature of the arc
in the vicinity of any point P on it. The longer the radius, the bigger
the circle, and less the curvature of the arc in the vicinity of any point
P on it. For a very large circle the curvature of an arc at some point
approaches that of a straight line i.e. zero curvature. In the following
we will give the technical definition of curvature. We will find that this
definition leads directly to the result that the curvature, K, of a circle
is equal to the reciprocal of its radius r i.e. K = 1

r. Thus, for a circle,
the length of its radius is a direct measure of its curvature.

Technical definition of curvature. Consider any smooth curve. Curva-
ture measures the rate at which the tangent line turns per unit distance
moved along the curve. Or, more simply, it measures the rate of change
of direction of the curve. Let P1 and P2 be two points on a curve, sep-
arated by an arc of length ∆s. See Fig 1. Then the average curvature
of the arc from P1 to P2 is expressed by the fraction ∆θ

∆s where where
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Figure 1. Technical definition of curvature

∆θ = θ2 − θ1 is the angle turned through by the tangent line moving
from P1 to P2. The curvature κ at point P is defined as

(1.3) κ = lim
∆s→0

∆θ

∆s
=

dθ

ds
.

We say that the curvatures of a convex curve K is bounded from
below if there exist a positive constant c > 0 such that

(1.4) inf
x∈K

κ(x) ≥ c > 0.

We are ready to state our main result of restriction estimates for arbi-
trary convex curves with non-constant curvature in R2.

Theorem 1.1. Let K ⊂ R2 be a bounded convex curve with a non-
constant and lower bounded curvature c(> 0) and σ a Lebesque measure
on K. Then we have

(1.5) ‖f̂dσ‖Lq(R2) ≤ Cp,q‖f‖Lp(K,dσ)

whenever q > 4 and q > 3p′.

Note that any regularity assumption is not required in Theorem 1.1
and the result is exactly the same to that of restriction conjecture for
the circle in (1.2) except endpoints.

2. Preliminary reduction and geometric facts

Before proving our main Theorem 1.1, we will introduce the prelim-
inary reduction and some geometric facts. As before consider a convex
curve K in R2. We identify the unit circle S1 with the interval [0, 2π)
and write the convex curve as follows.

K =
m⋃

j=1

(N)−1([2π(j − 1)/m, 2πj/m)) =
m⋃

j=1

Kj
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where N is a Gauss map sending each point of K to the outward normal
and m is a positive integer. Choose the large positive integer m À 8 so
that we may assume that for each j = 1, 2, · · · ,m

π

4
À sup

x,y∈Kj

|N(y)−N(x)|.

By the triangle inequality, it therefore suffices to consider the restriction
problem for a continuous, bounded convex curve K whose the difference
of any two outward normals is contained into the interval (0, π

4 ) which
shall be always assumed throughout this paper. In order to decompose
K ×K, we shall use a Whitney decomposition. For each n ≥ 0, bisect
repeatedly the segments of the convex curve K and get the 2n segments
of K with equal length ∼ 2−n. Let Pn be the set of all segment at stage
n ≥ 0. For each two segments I, J ∈ Pn from the same stage n ≥ 2,
I ∼ J means that they are not adjacent, but their parents are adjacent.
Note that for each I ∈ Pn, there are at most three segments J ∈ Pn with
I ∼ J. For each x 6= y on K there is exactly one pair of segments I, J
containing x and y respectively such that I ∼ J and we can therefore
write

(2.1) (K ×K) \D =
⋃

I∼J

I × J =
∞⋃

n=2

(
⋃

I,J∈Pn:I∼J

I × J)

where D = {(x, x) ∈ K ×K : x ∈ K}.
We shall observe some properties of the convex curve K with non-

constant curvature.

Lemma 2.1. For each (x′, y′) ∈ K ×K, let z′ = x′ + y′ ∈ R2. Then
there doesn’t exist an element (x, y) of K ×K such that x + y = z′ and
(x, y) 6= (x′, y′).

Proof. Recall that we have assumed that the difference of any two
outward normals on the convex curve K is contained in the interval
(0, π

4 ) and the convex curve K doesn’t contain any line segment. For
each z ∈ R2, let

Mz = {(x, y) ∈ R2 ×R2 : x + y = z}.
By the property of a parallelogram, note that

(2.2) (x, y) ∈ Mz if and only if
x + y

2
=

z

2
.
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Fix a (x′, y′) ∈ K×K and let z′ = x′+y′ ∈ R2. without loss of generality,
we may assume that

0 < |N(y′)−N(x′)| < π

4
,

using the convexity of K not containing any line segment. By con-
tradiction, we shall prove Lemma 2.1. To do this, assume that there
exists a (x, y) ∈ K × K such that x + y = z′, (x, y) 6= (x′, y′) and
0 < |N(y′)−N(x′)| < π

4 . Let S be an arc from x′ to y′ on convex curve
K. If x, y ∈ S or x, y 6∈ S, then by (2.2) and convexity, it is impossible.
Thus x ∈ S or y ∈ S. We assume that x ∈ S and y 6∈ S. Then the straight
lines of x to x′ and y to y′ are parallel or collinear. This is a contra-
diction to the fact that we have assumed that the difference of any two
outward normals is contained in the interval (0, π

4 ) and (x, y) 6= (x′, y′).
Thus the proof of Lemma 2.1 is complete.

Remark 2.2. Let I, J, I ′, J ′ ∈ Pn. Then we easily note that Lemma
2.1 implies that if I or J is not adjacent to both I ′ and J ′ then there
exists a small ε > 0 so that

(I + J)ε ∩ (I ′ + J ′)ε = ∅.
Therefore for every pair (I, J) ∈ K×K with I ∼ J from the same stage
n ≥ 2, there are at most eight pairs (I ′, J ′) ∈ K ×K with I ′ ∼ J ′ such
that

(I + J)ε ∩ (I ′ + J ′)ε 6= ∅
for all ε > 0.

Lemma 2.3. Let S(R) be a quarter-circle with radius R > 0. Let H
and T be two arcs in S(R) of angle ∼ θ and separation ∼ θ. Then we
have that for each small ε > 0,

sup
x∈R2

|Hε ∩ (T + x)| . ε

θ
∼ εR

|T |
where |T | means an arc length of T.

Proof. The proof is based on a geometric observation. Observe that
the angle between the translated T and Hε is ∼ θ. Thus we see that for
all x ∈ R2,

|Hε ∩ (T + x)| . ε

sin θ
∼ ε

θ

which proves Lemma 2.3.
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Lemma 2.3 means that the angle between H and T doesn’t largely
change as it moves from H to T. Thus by (1.3) and lemma 2.3, we
can obtain the followings. Let S(R1) be a quarter circle with radius
R1(> R). Let H̃ and T̃ be two arcs with the same length of H and T in
S(R1) of angle ∼ θ and separation ∼ θ. Then we have that

sup
x∈R2

|Hε ∩ (T + x)| . sup
x∈R2

|H̃ε ∩ (T̃ + x)|.

We can also apply the result of lemma 2.3 to any convex curve which
doesn’t contain any line segment.

Corollary 2.4. Let K be a convex curve whose curvature is non-
constant and bounded from below. Then for each I, J ∈ Pn with I ∼ J,
we have that

sup
x∈R2

|Iε ∩ (J + x)| . ε2n.

Proof. Suppose that the convex curve K has a lower bound c(> 0)
of its curvature. By (1.4) we assume that the curve K has a inf κ(x) at
some point x in K. Let ∆S̃ be an arc of the neighborhood of x. There
exist two arcs Ĩ , J̃ ∈ Pn with Ĩ ∼ J̃ on ∆S̃ for sufficiently large n. Let I
and J be two distinct arcs on any other ∆S in K. Note that the length
of I and J is the same to that of Ĩ and J̃ . Then by lemma 2.3,

sup
x∈R2

|Iε ∩ (J + x)| . sup
x∈R2

|Ĩε ∩ (J̃ + x)| . ε

|J̃ | ∼ ε2n.

We complete the proof.

Theorem 2.5. Suppose that K is a convex curve with nonconstant
curvature and curvature bounded from below. Let E ⊂ K and I, J ∈ Pn.
Then

‖χEdσI ∗ χEdσJ‖L2(R2) . 2n/2|E ∩ I|1/2|E ∩ J |1/2

where dσI , dσJ denote the restriction measure of σ to the set I, J re-
spectively.

Proof. Using bilinear interpolation, it suffices to show that the esti-
mates

‖χEdσI ∗ χEdσJ‖L1(R2) . ‖χE‖L1(dσI
)‖χE‖L1(dσJ

)

and
‖χEdσI ∗ χEdσJ‖L∞(R2) . 2n‖χE‖L∞(dσI

)‖χE‖L∞(dσJ
)

hold. The first estimate is obvious by Young’s inequality. To justify the
second estimate, it suffices to show that

‖dσI ∗ dσJ‖L∞(R2) . 2n.
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By the definition of induced Lebesque measure, it is enough to verify

‖ 1
2ε

χIε ∗ dσJ‖
L∞(R2)

. 2n

for all sufficiently small ε > 0. However this is an immediate result from
Corollary 2.4. Thus we complete the proof.

3. Proof of Theorem 1.1

In order to prove the estimate (1.4) in Theorem 1.1, we may assume
that f is the characteristic function of an arbitrary subset E of the
convex curve K (see, [9]). By interpolation with the trivial case q = ∞,
it therefore suffices to show that the estimate

(3.1) ‖χ̂Edσ‖Lq(R2) . ‖χE‖Lp(K,dσ) = |E| 1p

holds whenever q > 4 and 1 − 2
q = 2

p . Squaring the estimate (3.1), we
shall actually show that

‖χ̂Edσ χ̂Edσ‖ q
2

. |E| 2p .

Let’s estimate the left hand side. Using the fact and notation in (2.1)
with triangle inequality, we see that

‖χ̂Edσ χ̂Edσ‖ q
2

= ‖
∑

I∼J

χ̂EdσI χ̂EdσJ‖ q
2

= ‖
∑

n≥2

∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖ q
2

≤
∑

n≥2

‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖ q
2

(3.2)

where dσI , dσJ denote the restriction measure of dσ to the sets I, J re-
spectively. Since q > 4, we shall estimate the q/2 norm by the L∞ norm
and L2 norm using Hölder’s inequality. From the triangle inequality, we
see that

(3.3) ‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖∞ ≤
∑

I,J∈Pn:I∼J

|E ∩ I||E ∩ J |.
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We shall estimate the right hand side by two different values. We first
have the trivial estimate

(3.4)
∑

I,J∈Pn:I∼J

|E ∩ I||E ∩ J | ≤
( ∑

I∈Pn

|E ∩ I|
)( ∑

J∈Pn

|E ∩ J |
)

= |E|2.

Recall that the length of I ∈ Pn is ∼ 2−n, and so we may estimate |E∩J |
by ∼ 2−n. Since there are at most three J ’s for each I ∈ Pn, we have an
alternative estimate

∑

I,J∈Pn:I∼J

|E ∩ I||E ∩ J |

=
∑

I∈Pn

|E ∩ I|
( ∑

I,J∈Pn:I∼J

|E ∩ J |
)
≤ 3 · 2−n|E|.

(3.5)

Thus we obtain from (3.4) and (3.5) that

(3.6)
∑

I,J∈Pn:I∼J

|E ∩ I||E ∩ J | . |E|min(|E|, 2−n).

Combining this estimate with (3.3), we have

(3.7) ‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖∞ . |E|min(|E|, 2−n).

In order to estimate the L2 norm, we write

‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖L2 = ‖
∑

I,J∈Pn:I∼J

χEdσI ∗ χEdσJ‖L2

by Plancherel’s theorem. We shall show that I ∼ J vary then the
measures χEdσI ∗ χEdσJ have almost disjoint supports so that these
measures are almost orthogonal. To see this, note that the support of
the measure χEdσI ∗ χEdσJ is contained in the set (I + J)ε for small
ε > 0, and then use the fact in Remark 2.2. Because this is almost
orthogonal, we see that

‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖L2 .
( ∑

I,J∈Pn:I∼J

‖χEdσI ∗ χEdσJ‖2
2

)1/2

.

Using theorem 2.5 and (3.6), we obtain that
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‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖L2 . 2n/2

( ∑

I,J∈Pn:I∼J

|E ∩ I||E ∩ J |
)1/2

. 2n/2

(
|E|min(|E|, 2−n)

)1/2

.

Combining this with the estimate (3.7) by Hölder’s inequality, we see
that for q > 4

‖
∑

I,J∈Pn:I∼J

χ̂EdσI χ̂EdσJ‖ q
2

. 22n/q

(
|E|min(|E|, 2−n)

)1−q/2

.

Combining this with the estimate (3.2), simple computation yields

‖χ̂EdσI χ̂EdσJ‖ q
2

.
∑

n≥2

22n/q

(
|E|min(|E|, 2−n)

)1−q/2

≤
∑

n≥2:|E|≤2−n

22n/q(2−n|E|)1−q/2 +

∑

n≥2:|E|>2−n

22n/q(2−n|E|)1−q/2

= |E|1−q/2
∑

n≥2

(24/q−1)n . |E|1−q/2 = |E|p/2

since q > 4 and 1− 2/q = 2/p. Thus the proof is complete.
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