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CONVERGENCE THEOREMS FOR THE C-INTEGRAL

Jae Myung Park*, Byung Moo Kim**, and Young Kuk
Kim***

Abstract. In this paper, we prove convergence theorems for the
C-integral.

1. Introduction and preliminaries

It is well-known [8] that the Monotone Convergence Theorem and the
Dominated Convergence Theorem are valid for the Lebesgue, Perron,
Denjoy and Henstock integrals. In this paper, we prove convergence
theorems for the C-integral.

Throughout this paper, I0 = [a, b] is a compact interval in R. Let D =
{(Ii, ξi)}n

i=1 be a finite collection of non-overlapping tagged intervals of
I0 and let δ be a positive function on I0.

The collection D is a δ-fine McShane partition of I0 if ∪n
i=1Ii = I0,

Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)) and ξi ∈ Io for all i = 1, 2, ..., n and D is a
δ-fine Cε-partition of I0 if it is a δ-fine McShane partition of I0 and

n∑

i=1

dist(ξi, Ii) <
1
ε
,

where dist(ξi, Ii) = inf{|t− ξi| : t ∈ ξi}.
Given a δ-fine partition D = {(Ii, ξi)}n

i=1 we write

S(f,D) =
n∑

i=1

f(ξi)|Ii|

whenever f : I0 → R.
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2. Properties of the C-integral

We present the definition of the C-integral.

Definition 2.1. A function f : I0 → R is C-integrable if there exists
a real number A such that for each ε > 0 there is a positive function
δ(ξ) : I0 → R+ such that

|S(f,D)−A| < ε

for each δ-fine Cε-partition D = {(Ii, ξi)} of I0. The real number A is
called the C-integral of f on I0 and we write A =

∫
I0

f or A = (C)
∫
I0

f .
The function f is C-integrable on the set E ⊂ I0 if the function fχE

is C-integrable on I0. We write
∫
E f =

∫
I0

fχE .

We can easily get the following theorems.

Theorem 2.2. A function f : I0 → R is C-integrable if and only if
for each ε > 0 there is a positive function δ(ξ) : I0 → R+ such that

|S(f,D1)− S(f,D2)| < ε

for any δ-fine Cε -partitions D1 and D2 of I0.

Theorem 2.3. Let f : I0 → R.
(1) If f is C-integrable on I0, then f is C-integrable on every subin-

terval of I0.
(2) If f is C-integrable on each of the intervals I1 and I2, where I1

and I2 are non-overlapping and I1 ∪ I2 = I0, then f is C-integrable on
I0 and

∫
I1

f +
∫
I2

f =
∫
I0

f .

The following theorem shows that the C-integral is linear.

Theorem 2.4. Let f and g be C-integrable functions on I0. Then
(1) αf is C-integrable on I0 and

∫
I0

αf = α
∫
I0

f for each α ∈ R,

(2) f + g is C-integrable on I0 and
∫
I0

(f + g) =
∫
I0

f +
∫
I0

g.

Definition 2.5. Let F : I0 → R and let E be a subset of I0.
(a) F is said to be ACc on E if for each ε > 0 there is a constant

η > 0 and a positive function δ : I0 → R+ such that |∑i F (Ii)| < ε for
each δ-fine partial Cε-partition D = {(Ii, ξi)} of I0 satisfying ξi ∈ E and∑

i |Ii| < η.
(b) F is said to be ACGc on E if F is continuous on E and E can be

expressed as a countable union of sets on each of which F is ACc.

Theorem 2.6. ([12]) If a function f : I0 → R is C-integrable on I0 if
and only if there is an ACGc function F on I0 such that F ′ = f almost
everywhere on I0.
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3. Convergence Theorems for the C-integral

We will prove the convergence theorem for the C-integral.

Theorem 3.1. (Uniform Convergence Theorem) Let {fn} be a se-
quence of C-integral functions defined on [a, b] and suppose that {fn}
converges to f uniformly on [a, b]. Then f is C-integral on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn .

Proof. Given ε > 0, there exists N such that if n ≥ N , then

|fn(x)− f(x)| < ε

for all x ∈ [a, b]. Consequently, if m,n ≥ N , then

−2ε < fn(x)− fm(x) < 2ε for x ∈ [a, b]

Hence, −2ε(b− a) <
∫ b
a fn−

∫ b
a fm < 2ε(b− a), where

∣∣ ∫ b
a fn−

∫ b
a fm

∣∣ <

2ε(b − a). Since ε > 0 is arbitrary, the sequence {∫ b
a fn} is a Cauchy

sequence. Let limn→∞
∫ b
a fn = L. If D = {(Ii, ξi)}p

i=1 is any Cε-partition
of [a, b] and n ≥ N , then

|S(fn, D)− S(f,D)| =
∣∣

p∑

i=1

[fn(ξi)− f(ξi)]|Ii|
∣∣

≤
p∑

i=1

|fn(ξi)− f(ξi)||Ii|

≤
p∑

i=1

ε|Ii| = ε(b− a) .

Choose a fixed number n0 ≥ N such that
∣∣ ∫ b

a fn0 − L
∣∣ < ε. Let δ be a

positive function on [a, b] such that
∣∣ ∫ b

a fn0 − S(fn0 , D)
∣∣ < ε whenever

D is a δ-fine Cε-partition of [a, b]. Then

|S(f,D)− L| ≤ |S(f, D)− S(fn0 , D)|+ |S(fn0 , D)−
∫ b

a
fn0 |

+|
∫ b

a
fn0 − L|

< ε(b− a) + ε + ε = ε(b− a + 2).
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Hence, f is C-integrable on [a, b] and
∫ b

a
f = L = lim

n→∞

∫ b

a
fn.

¤

Theorem 3.2. (Monotone Convergence Theorem) Let {fn} be a
monotone increasing sequence of C-integrable functions defined on [a, b]
and suppose that {fn} converges pointwise to a measurable function f

on [a, b]. If limn→∞
∫ b
a fn is finite, then f is C-integrable on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since the sequence {fn} is increasing, {fn−f1} is an increasing
sequence of nonnegative C-integrable functions on [a, b]. Since fn−f1 is
nonnegative for each n, it follows that each fn−f1 is Lebesgue integrable
on [a, b] and limn→∞(fn − f1) = f − f1.

By the Monotone Convergence Theorem for the Lebesgue integral,
the function f − f1 is Lebesgue integrable on [a, b] and

(L)
∫ b

a
(f − f1) = lim

n→∞(L)
∫ b

a
(fn − f1)

= lim
n→∞

∫ b

a
(fn − f1)

= lim
n→∞(

∫ b

a
fn −

∫ b

a
f1)

= lim
n→∞

∫ b

a
fn −

∫ b

a
f1.

Since f − f1 and f1 are C-integrable on [a, b], the function f = (f −
f1) + f1 is C-integrable on [a, b]. Hence,

∫ b

a
f =

∫ b

a
(f − f1) +

∫ b

a
f1

= (L)
∫ b

a
(f − f1) +

∫ b

a
f1

= lim
n→∞

∫ b

a
fn −

∫ b

a
f1 +

∫ b

a
f1
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= lim
n→∞

∫ b

a
fn.

¤

Theorem 3.3. (Dominated Convergence Theorem) Let {fn} be a
sequence of C-integrable functions defined on [a, b] and suppose that
{fn} converges to a measurable function f almost everywhere on [a, b].
If there exist C-integrable functions g and h on [a, b] such that g ≤ fn ≤ h
almost everywhere on [a, b] for all n, then the function f is C-integrable
on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since 0 ≤ fn − g ≤ h − g and h − g is a nonnegative C-
integrable function on [a, b], h − g is Lebesgue integrable. Since {fn}
converges pointwise to f almost everywhere on [a, b], 0 ≤ f − g ≤ h− g
almost everywhere on [a, b]. Hence, f − g is Lebesgue integrable. Since
fn−g converges pointwise to f−g almost everywhere on [a, b] and fn−g
is Lebesgue integrable on [a, b], by the Dominated Convergence Theorem
for the Lebesgue integral we have

(L)
∫ b

a
(f − g) = lim

n→∞(L)
∫ b

a
(fn − g).

Since f − g and g are C-integrable, f = (f − g) + g is C-integrable and
∫ b

a
f =

∫ b

a
(f − g) +

∫ b

a
g

= (L)
∫ b

a
(f − g) +

∫ b

a
g

= lim
n→∞(L)

∫ b

a
(fn − g) +

∫ b

a
g

= lim
n→∞

∫ b

a
(fn − g) +

∫ b

a
g

= lim
n→∞

∫ b

a
fn −

∫ b

a
g +

∫ b

a
g = lim

n→∞

∫ b

a
fn.

¤
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Corollary 3.4. Let {fn} be a sequence of C-integrable functions
defined on [a, b] and suppose that {fn} converges to a measurable func-
tion f almost everywhere on [a, b]. If there exist a C-integrable function
g and a Henstock integrable function h such that g ≤ fn ≤ h almost
everywhere on [a, b] for all n, then f is C-integrable on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since 0 ≤ fn− g ≤ h− g and h− g is a nonnegative Henstock
integrable function on [a, b], h−g is Lebesgue integrable on [a, b]. Hence,
h = (h−g)+g is C-integrable on [a, b]. By Theorem 3.3, f is C-integrable
on [a, b] and ∫ b

a
f = lim

n→∞

∫ b

a
fn.

¤

We begin with the concept of uniform C-integrability. The idea be-
hind this concept is that there exists a single positive function δ that
works for all of the functions.

Definition 3.5. Let {fn} be a sequence of C-integrable functions
defined on I0. The sequence {fn} is uniformly C-integrable on I0 if for
each ε > 0 there exists a positive function δ : I0 → R+ such that

|S(fn, D)−
∫

I0

fn| < ε

for all n, whenever D = {(Ii, ξi)}n
i=1 is a δ-fine Cε-partition of I0

Theorem 3.6. Assume that {fn} is uniformly C-integrable on I0

such that

lim
n→∞ fn(ξ) = f(ξ).

Then the function f : I0 → R is C-integrable on I0 and we have

lim
n→∞

∫

I0

fn =
∫

I0

f.

Proof. Since {fn} is uniformly C-integrable on I0, for each ε > 0 there
is a positive function δ : I0 → R+ such that

|S(fn, D)−
∫

I0

fn| < ε

3
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for all n, whenever D is a δ-fine C ε
3
-partition of I0. Let D be a δ-fine

C ε
3
-partition of I0. Since limn→∞ fn(ξ) = f(ξ), there exists an N ∈ N

such that
|S(fn, D)− S(f, D)| < ε

for all n > N . Then we have

|
∫

I0

fn −
∫

I0

fm|

≤ |S(f, D)−
∫

I0

fn|+ |S(f, D)−
∫

I0

fm|

≤ |S(fn, D)− S(f, D)|+ |S(fn, D)−
∫

I0

fn|

+ |S(fm, D)− S(f,D)|+ |S(fm, D)−
∫

I0

fm|

<
8
3
ε

for all m,n > N . Hence {∫I0
fn} is a Cauchy sequence. Let

lim
n→∞

∫

I0

fn = A.

Then there exists an M ∈ N such that | ∫I0
fn − A| < ε

3 for all n > M .
Take any δ-fine Cε-partition D = {(I, ξ)} of I0. Since limn→∞ fn(ξ) =
f(ξ), there exists a k > M such that |S(fk, D)− S(f, D)| < ε

3 .
Then we have

|S(f, D)−A|

≤ |S(f, D)− S(fk, D)|+ |S(fk, D)−
∫

I0

fk|+ |
∫

I0

fk −A|
< ε

Hence f is C-integrable on I0 and limn→∞
∫
I0

fn =
∫
I0

f . ¤
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