COMMON STATIONARY POINTS FOR CONTRACTIVE TYPE MULTIVALUED MAPPINGS

SHIN MIN KANG*, MING JIA**, ZEQING LIU*** AND YOUNG CHEL KWUN****

ABSTRACT. Several common stationary point theorems for two classes of contractive type multivalued mappings in a complete bounded metric space are given. The results presented in this paper generalize and extend some known results in literature.

1. Introduction

Let (X,d) be a metric space and B(X) denote the set of all nonempty bounded subsets of X.

For $A, B \in X$, define $\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}$ and $\delta(A) = \delta(A, A)$. If A consists of a single point a, we write $\delta(A, B) = \delta(a, B)$. If B also consists of a single point b, we write $\delta(A, B) = \delta(a, b) = d(a, b)$.

Let $\mathbb{R}^+ = [0, +\infty)$, \mathbb{N} and ω denote the sets of positive integers and nonnegative integers, respectively. Let $\Phi = \{\phi : \phi : \mathbb{R}^+ \to \mathbb{R}^+ \text{ is an upper semicontinuous and nondecreasing function satisfying <math>\phi(t) < t \text{ for each } t > 0\}$.

Let F and G be multivalued mappings from (X, d) into B(X). A point $x \in X$ is called a common stationary point of F and G if $Fx = Gx = \{x\}$. For $A \subseteq X$, let $FA = \bigcup_{a \in A} Fa$ and GFA = G(FA). The mappings F and G are said to commute if FGx = GFx for all $x \in X$.

Define $C_F = \{T : T \text{ is a mapping of from } X \text{ into } B(X) \text{ which commutes with } F\}$. It follows that $C_F \supseteq \{F^n : n \in \omega\}$, where $F^0x = \{x\}$ for all $x \in X$.

Received May 13, 2009; Accepted August 14, 2009.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 54H25.

Key words and phrases: common stationary point, contractive type multivalued mappings, commuting mappings, complete bounded metric space.

Correspondence should be addressed to Young Chel Kwun, yckwun@daunet.donga.ac.kr.

^{***} This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (2009A419).

In 1983, Fisher [4] established a common fixed point theorem for continuous and commuting mappings F and G from (X, d) into B(X) satisfying

(1.1)
$$\delta(F^p G^p x, F^p G^p y)$$

$$\leq c \max\{\delta(F^q G^r x, F^s G^t y), \delta(F^q G^r x, F^s G^t x), \delta(F^q G^r y, F^s G^t y) : 0 \leq q, r, s, t \leq p\}$$

for all $x, y \in X$, where $0 \le c < 1$ and p is a fixed positive integer.

In 1994, Ohta and Nikaido [6] obtained the existence of fixed point for a continuous self mapping f on (X, d) satisfying

$$(1.2) d(f^k x, f^k y) \le c\delta(\{f^i t : t \in \{x, y\}, i \in \omega\})$$

for all $x, y \in X$, where $0 \le c < 1$ and k is a fixed positive integer.

In 2000, Liu and Kang [5] proved some common stationary point theorems for commuting mappings F and G from (X, d) into B(X) satisfying one of the following conditions:

$$(1.3) \delta(F^pG^px, F^qG^qy) \le \phi(\delta(\bigcup_{D \in C_{FG}} D\{x, y\}))$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed positive integers;

$$(1.4) \delta(F^p x, G^q y) \le \phi(\delta(\bigcup_{D \in C_p \cap C_q} D\{x, y\}))$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed positive integers.

The purpose of the paper is to study the existence of common stationary points for the commuting multivalued mappings F and G from (X, d) into B(X) satisfying one of the conditions below:

(1.5)
$$\delta(F^p G^q x, F^s G^t y) \\ \leq \phi(\delta(\bigcup_{D \in C_F \cap C_G} D(\bigcup \{F^m G^r u : u \in \{x, y\}, m, r \in \omega\})))$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q, s, t are fixed nonnegative integers satisfying $p + q \ge 1$ and $s + t \ge 1$;

$$(1.6) \delta(F^p x, G^q y) \le \phi(\delta(\bigcup_{D \in C_F} \bigcup_{m \in \omega} DF^m x, \bigcup_{E \in C_G} \bigcup_{r \in \omega} EG^r y))$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed nonnegative integers satisfying $p+q \geq 1$. Under certain conditions, we establish two common stationary point theorems for the contractive type multivalued mappings F and G satisfying (1.5) and (1.6), respectively. Our results extend and unify several results due to Fisher [1, 2, 4] and Ohta and Nikaido [6].

It is evident that the conditions (1.5) and (1.6) completely independent of each other.

Recall some concepts and result in [3, 7].

DEFINITION 1.1. ([3]) Let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of sets in B(X) and $A \in B(X)$. The sequence $\{A_n\}_{n\in\mathbb{N}}$ is said to *converge* to the set A if (1) each point $a \in A$ is the limit of some convergent sequence $\{a_n\}_{n\in\mathbb{N}}$, where $a_n \in A_n$ for $n \in \mathbb{N}$;

(2) for arbitrary $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $A_n \subseteq A_{\epsilon}$ for n > k, where A_{ϵ} is the union of all open spheres with centers in A and radius ϵ .

DEFINITION 1.2. ([3]) Let F be a multivalued mapping of (X,d) into B(X). The mapping F is said to be *continuous* in X if whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence of points in X converging to $x\in X$, the sequence $\{Fx_n\}_{n\in\mathbb{N}}$ in B(X) converges to $Fx\in B(X)$.

LEMMA 1.1. ([3]) If $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ are sequences of bounded subsets of a complete metric space (X,d) which converge to the bounded subsets A and B, resp., then the sequence $\{\delta(A_n,B_n)\}_{n\in\mathbb{N}}$ converges to $\delta(A,B)$.

LEMMA 1.2. ([7]) Let $\phi \in \Phi$. Then $\phi(t) < t$ for each t > 0 if and only if $\lim_{n \to \infty} \phi^n(t) = 0$, where ϕ^n denotes the n-times composition of ϕ .

2. Common stationary points

We are now ready to prove our main results.

THEOREM 2.1. Let (X,d) be a complete bounded metric space, F and G be continuous and commuting mappings from (X,d) into B(X) satisfying

(1.5). Then F and G have a unique common stationary point $z \in X$ and the sequence $\{F^nG^nx\}_{n\in\omega}$ converges to $\{z\}$ for all $x\in X$.

Proof. Let A, B be in B(X). By (1.5) we have

$$\delta(F^p G^q a, F^s G^t b)$$

$$\leq \phi(\delta(\bigcup_{D \in C_E \cap C_C} D(\bigcup \{F^m G^r u : u \in \{a, b\}, m, r \in \omega\})))$$

for all $a \in A$, $b \in B$, which implies that

(2.1)
$$\delta(F^{p}G^{q}A, F^{s}G^{t}B) \leq \phi(\delta(\bigcup_{D \in C_{F} \cap C_{G}} D(\bigcup \{F^{m}G^{r}(A \cup B) : m, r \in \omega\}))).$$

Let $M = \delta(X)$, k = p + q + s + t and $X_n = F^n G^n X$ for each $n \in \omega$. Choose $x_n \in X_n$ for each $n \in \omega$. Let n be fixed in \mathbb{N} . It is clear that it can be written as

$$(2.2) n = kj_n + i_n, \quad 0 \le i_n < k, j_n \in \omega.$$

It follows from (2.1) and (2.2) that

$$\begin{split} &\delta(X_n) \\ &= \delta(F^n G^n X, F^n G^n X) \\ &= \delta(F^p G^q (F^{k+i_n-p} G^{k+i_n-q} X_{k(j_n-1)}), \\ &F^s G^t (F^{k+i_n-s} G^{k+i_n-t} X_{k(j_n-1)})) \\ &\leq \phi(\delta(\bigcup_{D \in C_F \cap C_G} D(\bigcup \{F^m G^r (F^{k+i_n-p} G^{k+i_n-q} X_{k(j_n-1)} \\ &\bigcup F^{k+i_n-s} G^{k+i_n-t} X_{k(j_n-1)}) : m, r \in \omega\}))) \\ &= \phi(\delta(\bigcup_{D \in C_F \cap C_G} \bigcup \{F^{k(j_n-1)} G^{k(j_n-1)} F^{k+i_n-p+m} G^{k+i_n-q+r} DX \\ &\bigcup F^{k(j_n-1)} G^{k(j_n-1)} F^{k+i_n-s+m} G^{k+i_n-t+r} DX : m, r \in \omega\})) \\ &\leq \phi(\delta(X_{k(j_n-1)})), \end{split}$$

which together with $X_n \subseteq X_{n-1}$ yields that

(2.3)
$$\delta(X_n) \leq \delta(X_{kj_n}) \leq \phi(\delta(X_{k(j_n-1)}))$$
$$\leq \dots \leq \phi^{j_n-1}(\delta(X_k)) \leq \phi^{j_n}(M).$$

For any m > n > k, by (2.2) and (2.3) we have

(2.4)
$$d(x_n, x_m) \le \delta(X_n, X_m) \le \delta(X_n) \le \phi^{j_n}(M).$$

It follows from (2.4) and $\phi \in \Phi$ that $\{x_n\}_{n \in \omega}$ is a Cauchy sequence. By completeness of X we infer that there exists a point $z \in X$ such that $x_n \to z$ as $n \to \infty$.

It follows from (2.2) and (2.3) that

$$\delta(z, X_n) \le d(z, x_m) + \delta(x_m, X_n) \le d(z, x_m) + \delta(X_n)$$

$$\le d(z, x_m) + \phi^{j_n}(M)$$

for $m, n \in \mathbb{N}$ with m > n. Letting m tend to infinity, we obtain that

(2.5)
$$\delta(z, X_n) \le \phi^{j_n}(M), \quad \forall n \in \mathbb{N}.$$

Since F is continuous and $x_n \to z$ as $n \to \infty$, it follows that $\{Fx_n\}_{n \in \omega}$ converges to $\{Fz\}$. Note that $Fx_n \subseteq F(F^nG^nX) = F^nG^nFX \subseteq X_n$ for all $n \in \mathbb{N}$. It follows that

(2.6)
$$\delta(z, Fx_n) \le \delta(z, X_n), \quad \forall n \in \mathbb{N}.$$

Taking $n \to \infty$, in view of (2.5) and (2.6), we have

$$\delta(z, Fz) \le \phi^{j_n}(M) \to 0,$$

that is, $Fz = \{z\}$. Similarly, we have $Gz = \{z\}$.

Suppose that F and G have a second common stationary point $w \in X$. Thus $\{u\} = F^n G^n u \subseteq X_n$ for $u \in \{z, w\}$ and $n \in \omega$. In view of (2.3), we infer that $d(z, w) \leq \delta(X_n) \leq \phi^{j_n}(M) \to 0$ as $n \to \infty$, which implies that z = w. That is, F and G have a unique common stationary point $z \in X$.

For $x \in X$ and $n \in \omega$, choose $y_n \in F^nG^nx$. It follows that

$$d(y_n, z) \le \delta(F^n G^n x, z) \le \delta(X_n, z)$$

$$\le \delta(X_n) \le \phi^{j_n}(M) \to 0 \quad \text{as } n \to \infty,$$

which yields that $\{F^nG^nx\}_{n\in\omega}$ converges to $\{z\}$. This completes the proof.

REMARK 2.1. Theorem 2.1 extends Theorem 4 in [1], Theorem 2 in [2], Theorem 1 in [4] and Theorem 3 in [6].

THEOREM 2.2. Let (X,d) be a complete bounded metric space, F and G be continuous mappings from (X,d) into B(X) satisfying (1.6). Then F and G have a unique common stationary point $z \in X$ and the sequences $\{F^nx\}_{n\in\omega}$ and $\{G^nx\}_{n\in\omega}$ converge to $\{z\}$ for all $x\in X$.

Proof. Let $M = \delta(X)$, k = p + q, $X_n = F^n X$ and $Y_n = G^n X$ for every $n \in \omega$. Choose $x_n \in X_n$, $y_n \in Y_n$ for each $n \in \omega$. Let $n \in \mathbb{N}$ be fixed. Then, we note that (2.2) holds. In light of (1.6) and (2.2), we conclude that

$$\begin{split} \delta(X_n, Y_n) &= \delta(F^n X, G^n X) \\ &= \delta(F^p(F^{q+i_n} X_{k(j_n-1)}), G^q(G^{p+i_n} Y_{k(j_n-1)})) \\ &\leq \phi(\delta(\bigcup_{D \in C_F} \bigcup_{m \in \omega} DF^m F^{q+i_n} X_{k(j_n-1)}, \\ &\qquad \qquad \bigcup_{E \in C_G} \bigcup_{r \in \omega} EG^r G^{p+i_n} Y_{k(j_n-1)})) \\ &= \phi(\delta(\bigcup_{D \in C_F} \bigcup_{m \in \omega} F^{k(j_n-1)} F^{m+q+i_n} DX, \\ &\qquad \qquad \bigcup_{E \in C_G} \bigcup_{r \in \omega} G^{k(j_n-1)} G^{r+p+i_n} EY)) \\ &\leq \phi(\delta(X_{k(j_n-1)}, Y_{k(j_n-1)})), \end{split}$$

which implies that

(2.7)
$$\delta(X_n, Y_n) \leq \delta(X_{kj_n}, Y_{kj_n}) \leq \phi(\delta(X_{k(j_n-1)}, Y_{k(j_n-1)})) \\ \leq \dots \leq \phi^{j_n}(\delta(X)) = \phi^{j_n}(M).$$

For any m > n > k, by (2.2) and (2.7) we have

$$d(x_n, x_m) \le d(x_n, y_m) + d(y_m, x_m)$$

$$\le \delta(X_n, Y_n) + \delta(Y_n, X_n)$$

$$\le 2\phi^{j_n}(M) \to 0 \quad \text{as } n \to \infty.$$

which yields that $\{x_n\}_{n\in\omega}$ is a Cauchy sequence and hence $\lim_{n\to\infty} x_n = z$ for some $z\in X$ by completeness of X. Similarly, $\lim_{n\to\infty} y_n = w$ for some $w\in X$.

It follows from (2.2) and (2.7) that

$$\delta(z, X_n) \le d(z, x_m) + \delta(x_m, X_n)$$

$$\le d(z, x_m) + \delta(x_m, y_m) + \delta(y_m, X_n)$$

$$\le d(z, x_m) + 2\phi^{j_n}(M)$$

for $m, n \in \mathbb{N}$ with m > n. Letting m tend to infinity, we obtain that

(2.8)
$$\delta(z, X_n) \le 2\phi^{j_n}(M), \quad \forall n \in \mathbb{N}.$$

As in the proof of Theorem 2.1, we conclude that $Fz = \{z\}$. Similarly, $Gw = \{w\}$. Furthermore, (2.2) and (2.7) ensure that

$$d(z, w) = \delta(Fz, Gw) \le \delta(X_n, Y_n)$$

$$\le \phi^{j_n}(M) \to 0 \quad \text{as } n \to \infty,$$

which gives that z = w. Hence $Fz = \{z\} = Gz$.

Suppose that F and G have a second common stationary point v. Thus $\{u\} = F^n u \subseteq X_n$ and $\{u\} = G^n u \subseteq Y_n$ for $u \in \{z, v\}$ and $n \in \omega$. In view of (2.7), we infer that

$$d(z,v) \le \delta(X_n, Y_n) \le \phi^{j_n}(M) \to 0$$
 as $n \to \infty$,

which means that z = v. That is, F and G have a unique common stationary point z.

For $x \in X$ and $n \in \omega$, choose $a_n \in F^n x$. It follows from (2.2) and (2.7) that

$$d(a_n, z) \le \delta(F^n x, z) \le \delta(X_n, z)$$

$$\le \delta(X_n, Y_n) \le \phi^{j_n}(M) \to 0 \quad \text{as } n \to \infty,$$

which implies that $\{F^nx\}_{n\in\omega}$ converges to $\{z\}$. Similarly, $\{G^nx\}_{n\in\omega}$ converges to $\{z\}$. This completes the proof.

Acknowledgements. The authors thank the referees for useful comments and suggestions.

References

- [1] B. Fisher, Results on common fixed points on bounded metric spaces, Math. Sem. Notes, Kobe Univ. 7 (1979), 73–80.
- [2] B. Fisher, Set-valued mappings on bounded metric spaces, Indian J. Pure Appl. Math. 11 (1980), 8–12.
- [3] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq. 18 (1981), 69–77.
- [4] B. Fisher, Common fixed points of set-valued mappings on bounded metric spaces, Math. Sem. Notes, Kobe Univ. 11 (1983), 307–311.
- [5] Z. Liu and S. M. Kang, Common stations points of multivalued mappings on bounded metric spaces, Internet. J. Math. Math. Sci. 24 (2000), no. 11, 773–779.
- [6] M. Ohta and G. Nikaido, Remarks on fixed point theorems in complete metric spaces, Math. Japonica 39 (1994), 287–290.
- [7] S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16 (1977), 49–53.

*

DEPARTMENT OF MATHEMATICS AND RINS GYEONGSANG NATIONAL UNIVERSITY JINJU 660-701, REPUBLIC OF KOREA

E-mail: smkang@gnu.ac.kr

**

DEPARTMENT OF MATHEMATICS LIAONING NORMAL UNIVERSITY DALIAN, LIAONING 116029, PEOPLE'S REPUBLIC OF CHINA

E-mail: mingjia417@163.com

DEPARTMENT OF MATHEMATICS LIAONING NORMAL UNIVERSITY DALIAN, LIAONING 116029, PEOPLE'S REPUBLIC OF CHINA

 $E ext{-}mail: zeqingliu@dl.cn}$

Department of Mathematics Dong-A University Pusan 614-714, Republic of Korea

E-mail: yckwun@daunet.donga.ac.kr