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SOME REMARKS ON THE PERIODIC CONTINUED
FRACTION
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Abstract. Using the Binet’s formula, we show that the quotient
related ratio l1(x) 6= 0 for the eventually periodic continued frac-
tion x. Using this ratio, we also show that the derivative of the
Minkowski question mark function at the simple periodic contin-
ued fraction is infinite or 0. In particular, l1([1]) = 2 log γ where γ

is the golden mean (1 +
√

5)/2 and the derivative of the Minkowski
question mark function at the simple periodic continued fraction [1]
is infinite.

1. Introduction

Recently the differentiability and non-differentiability of the Minkowski
question mark function has been studied as the investigation of the
multifractal properties of the singular function([1, 3, 5]). The non-
differentiability of the Minkowski question mark function is closely re-
lated to the Stern-Brocot intervals([2]). For the study of Stern-Brocot
intervals, they used the ratio([2])

l1(x) = lim
n→∞

2 log qn(x)∑n
i=1 ai(x)

for the continued fraction x ∈ (0, 1) and the quotient

pn(x)/qn(x) = [a1(x), a2(x), a3(x), ..., an(x)],

where x = [a1(x), a2(x), a3(x), ...]. It is well-known that l1(x) = 0 for
the Lebesgue measure almost all x ∈ (0, 1)([2]). However there has been
no study of concrete example dissatisfying the relation l1(x) = 0. In this
paper, we find that

l1(x) = lim
n→∞

2 log qn(x)∑n
i=1 ai(x)

6= 0
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showing

l1(x) = lim inf
n→∞

2 log qn(x)∑n
i=1 ai(x)

> 0

for the eventually periodic continued fraction

x = [a1(x), a2(x), a3(x), ...] ∈ (0, 1).

For this, it is essential to show that l1([1]) = 2 log γ where γ is the golden
mean (1 +

√
5)/2([4]). We apply the Binet’s formula to its justification.

Further, for a = 1, 2, 3, 4, the derivative of the Minkowski question mark
function at the point [a] of the simple periodic continued fraction is infi-
nite. In contrast, for the integer a ≥ 5, the derivative of the Minkowski
question mark function at the point [a] of the simple periodic continued
fraction is 0.

2. Preliminaries

From now on, N denotes the set of the positive integers. We introduce
the continued fraction

x =
1

a1(x) + 1
a2(x)+ 1

a3(x)+...

denoted by x = [a1(x), a2(x), a3(x), ...] where ai(x) ∈ N for i ∈ N. In
this case, we also define the quotient of x for n ∈ N by

pn(x)
qn(x)

= [a1(x), a2(x), a3(x), ..., an(x)] =
1

a1(x) + 1
a2(x)+ 1

a3(x)+...
+ 1

an(x)

.

We note that the quotient is the reduced form. We define the periodic
continued fraction [a1, ..., an] by

[a1, ..., an] = [a1, ..., an, a1, ..., an, a1, ..., an, ...],

satisfying akn+i = ai for every non-negative integer k with 1 ≤ i ≤
n, n ∈ N. In particular, we call the periodic continued fraction [a]
the simple periodic continued fraction. We also define the eventually
periodic continued fraction [b1, ..., bm, c1, ..., ck] by

[b1, ..., bm, c1, ..., ck] = [b1, ..., bm, c1, ..., ck, c1, ..., ck, c1, ..., ck, ...]

for m, k ∈ N.
For our main result, we need the following Proposition from the Bi-

net’s formula derived by Binet in 1843, although the result was known
to Euler, Daniel Bernoulli, and de Moivre more than a century earlier.
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Proposition 2.1. (Binet’s formula) Let qn satisfy the recurrence
relation qn = aqn−1 + bqn−2 for every n ∈ N with q−1 = E, q0 = C and
q1 = D. Assume that the equation r2 − ar − b = 0 has the distinct
solutions. Then qn = Aλn

1 + Bλn
2 where λ1, λ2 are the distinct solutions

of the equation r2 − ar − b = 0 and A,B satisfy the initial conditions
q0 = C and q1 = D.

3. Main results

Theorem 3.1. For each a ∈ N, we have

qn([a]) =
√

a2 + 4 + a

2
√

a2 + 4
λn

1 +
√

a2 + 4− a

2
√

a2 + 4
λn

2

where λ1 = a+
√

a2+4
2 , λ2 = a−

√
a2+4
2 .

Proof. From the definition of the quotient of [a], we clearly see that
qn = aqn−1 + qn−2 with q−1 = 0, q0 = 1 and q1 = a(cf. [5]). By the
Binet’s formula, the closed form of qn satisfying the recurrence relation
qn = aqn−1+qn−2 is qn = Aλn

1 +Bλn
2 where λ1, λ2 are the solutions of the

equation r2− ar− 1 = 0 and A,B are from the initial conditions q0 = 1
and q1 = a. Clearly r = a±

√
a2+4
2 and A =

√
a2+4+a

2
√

a2+4
, B =

√
a2+4−a

2
√

a2+4
from

A + B = 1 and Aλ1 + Bλ2 = a.

For a = 1, we have the following fundamental fact to show one of our
main results.

Corollary 3.2. For each n ∈ N,

qn([1]) =
√

5 + 1
2
√

5
(
1 +

√
5

2
)n +

√
5− 1
2
√

5
(
1−

√
5

2
)n.

Proof. It follows from the above Theorem for a = 1.

Theorem 3.3. For each a ∈ N,

l1([a]) =
2
a

log
a +

√
a2 + 4
2

.

Proof. Since limn→∞(a−
√

a2+4
2 )n = 0,

l1([a]) = lim
n→∞

2 log qn([a])∑n
i=1 ai([a])

= lim
n→∞

2 log(a+
√

a2+4
2 )n

na
=

2
a

log
a +

√
a2 + 4
2

.
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For a = 1, we have the following interesting fact associated with
the golden mean, which ensures the infinite derivative of the Minkowski
question mark function at the point [1].

Corollary 3.4.

l1([1]) = 2 log
1 +

√
5

2
> log 2 > 0.

Lemma 3.5. For the eventually periodic continued fraction

x = [b1, ..., bm, c1, ..., ck]

where m, k ∈ N, we have qn(x) ≥ qn([1]) for all n ∈ N. Further, ai(x) ≤
max{b1, ..., bm, c1, ..., ck} for all i ∈ N.

Proof. It follows easily from the definitions of qn(x) and ai(x).

Theorem 3.6.

l1(x) = lim inf
n→∞

2 log qn(x)∑n
i=1 ai(x)

> 0

for the eventually periodic continued fraction

x = [a1(x), a2(x), a3(x), ...] = [b1, ..., bm, c1, ..., ck] ∈ (0, 1)

where m, k ∈ N.

Proof. Let max{b1, ..., bm, c1, ..., ck} = M . We note that qn(x) ≥
qn([1]) and ai(x) ≤ M from the above Lemma.

l1(x) = lim inf
n→∞

2 log qn(x)∑n
i=1 ai(x)

≥ lim inf
n→∞

2 log qn([1])∑n
i=1 M

= lim
n→∞

2 log qn([1])∑n
i=1 M

.

Therefore

l1(x) ≥ lim
n→∞

2 log qn([1])
nM

=
2
M

log
1 +

√
5

2
> 0.

Proposition 3.7. ([3]) Let x ∈ (0, 1). If l1(x) > log 2, then Q′(x) =
∞, where Q(x) is the Minkowski question mark function. Similarly, if
0 ≤ l1(x) < log 2, then Q′(x) = 0.

Proof. It follows from the corollary 6.2 of [3].

Theorem 3.8. For the positive integer a ≤ 4, Q′([a]) = ∞, where
Q(x) is the Minkowski question mark function. For the integer a ≥ 5,
Q′([a]) = 0.
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Proof. Let f(x) = 2
x log x+

√
x2+4
2 . We note that f(1), f(2), f(3), f(4) >

log 2 and f(5), f(6) < log 2. Putting g(x) = 2
x log x+2x

2 , we have f(x) ≤
g(x) for x ≥ 2 and g′(x) < 0 for x ≥ 2, which means that g(x)
is decreasing for x ≥ 2. Observing g(7) < log 2, we easily see that
l1([a]) = f(a) < log 2 for the integer a ≥ 5. It follows from the above
Proposition.
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