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SOME REMARKS ON THE PERIODIC CONTINUED
FRACTION

YEO-RIN LEE*

ABSTRACT. Using the Binet’s formula, we show that the quotient
related ratio l;(x) # 0 for the eventually periodic continued frac-
tion z. Using this ratio, we also show that the derivative of the
Minkowski question mark function at the simple periodic contin-

ued fraction is infinite or 0. In particular, [;([1]) = 2log~y where ~y
is the golden mean (14 +/5)/2 and the derivative of the Minkowski

question mark function at the simple periodic continued fraction [1]
is infinite.

1. Introduction

Recently the differentiability and non-differentiability of the Minkowski
question mark function has been studied as the investigation of the
multifractal properties of the singular function([1, 3, 5]). The non-
differentiability of the Minkowski question mark function is closely re-
lated to the Stern-Brocot intervals([2]). For the study of Stern-Brocot
intervals, they used the ratio([2])

. 2logqy(x)
li(z) = lim —=——%
n—00 Zi:l a;()

for the continued fraction x € (0,1) and the quotient

Pn(®)/qn(z) = [a1(2), az(x), as(x), ..., an(x)],
where z = [a1(z),a2(x),a3(x),...]. It is well-known that [1(z) = 0 for
the Lebesgue measure almost all z € (0,1)([2]). However there has been
no study of concrete example dissatisfying the relation /;(x) = 0. In this
paper, we find that

. 2loggy(x)
li(z) = lim —=——>—% #0
1) = S ) 7
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showing
2log qy,
L (2) = liminf 220892
- n—oo 3t ai(z)

for the eventually periodic continued fraction
x = [a1(z), az(x),as(x),...] € (0,1).

For this, it is essential to show that {1 ([1]) = 2log~y where - is the golden
mean (1 ++/5)/2([4]). We apply the Binet’s formula to its justification.
Further, for a = 1,2, 3, 4, the derivative of the Minkowski question mark
function at the point [a] of the simple periodic continued fraction is infi-
nite. In contrast, for the integer a > 5, the derivative of the Minkowski
question mark function at the point [a] of the simple periodic continued
fraction is 0.

2. Preliminaries

From now on, N denotes the set of the positive integers. We introduce
the continued fraction
1

ay(x) + -1

a2 ({E)+ ag(z1)+...

€r =

denoted by = = [a1(z),a2(x),as(x),...] where a;(z) € N for i € N. In
this case, we also define the quotient of x for n € N by
Pn () 1
= [a1($)7 a2<(L'), ag(.’E), ey an(x)] =
an () ar(z) + S L
az(x)+...

1
an (z)

We note that the quotient is the reduced form. We define the periodic
continued fraction [a1; .-, ay] by

(1, s Qn] = (A1, ety Qny @1y eeey Ay A1y ey gy -]
satisfying agni; = a; for every non-negative integer £ with 1 < i <
n, n € N. In particular, we call the periodic continued fraction [a]

the simple periodic continued fraction. We also define the eventually
periodic continued fraction [by, ..., by, C1, -, Ck) by

[bl, ceey bm, Cly ey Ck] = [bl, ceey bm, Cly.--3CkyCly ...y CkyCly ..oy CLy ]

for m,k € N.

For our main result, we need the following Proposition from the Bi-
net’s formula derived by Binet in 1843, although the result was known
to Euler, Daniel Bernoulli, and de Moivre more than a century earlier.
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PROPOSITION 2.1. (Binet’s formula) Let ¢, satisfy the recurrence
relation q, = aqn—1 + bgn—a for every n € N with q_1 = E, g9 = C' and
q1 = D. Assume that the equation > — ar — b = 0 has the distinct
solutions. Then g, = AN} + By where A1, Ay are the distinct solutions
of the equation > — ar — b = 0 and A, B satisfy the initial conditions
go=C and q1 = D.

3. Main results

THEOREM 3.1. For each a € N, we have
2 4 2 4 —
gofal) = L2 YO T2 Gy
2v/a? +4 2v/a? + 4

a+va2+4 Ao — a—Va?+4
2 1 A2 = 2 :

where \1 =

Proof. From the definition of the quotient of [a], we clearly see that
Gn = AQn—1 + qn—2 with ¢_1 = 0, o = 1 and ¢q1 = a(cf. [5]). By the
Binet’s formula, the closed form of ¢, satisfying the recurrence relation

dn = aQn—1+qn—2 is gn, = AXT+BA3 where A1, \g are the solutions of the
2

equation 7* —ar — 1 =0 and A, B are from the initial conditions ¢y = 1
_ _ a*xva2+4 _ Va2+4+a _ Va?2+4—a
and q; = a. Clearly r = *=3~= and A = aTil B = SaTi from

A+ B=1and A\ + B)Xy = a.

For a = 1, we have the following fundamental fact to show one of our
main results.

COROLLARY 3.2. For each n € N,

() = S Ly B YDy

Proof. Tt follows from the above Theorem for a = 1. O

THEOREM 3.3. For each a € N,

_ 2. a++vVa*+4
L(la]) = - log————.
Proof. Since lim,, o, (2—Y¢+2 V2“2+4)” =0,
- a ‘/CLQ n
(@) = lim 2loggn((a]) _ lim 2log(+Hg—) - Zlogw
n—oo 371y ai([a])  n—oo na a 2 '
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For a = 1, we have the following interesting fact associated with
the golden mean, which ensures the infinite derivative of the Minkowski

question mark function at the point [1].

COROLLARY 3.4.

_ 1 )
li([1]) = 2log V5 > log2 > 0.

LEMMA 3.5. For the eventually periodic continued fraction
T = [bl, ceny bm, Cly.eey Ck]

where m, k € N, we have g, (x) > g, ([1]) for all n € N. Further, a;(x) <
max{b1,...,bm, 1, ..., cp } for all i € N.

Proof. Tt follows easily from the definitions of ¢,(x) and a;(xz). O

THEOREM 3.6.
2log qn ()

Li(z) =liminf 57—+ >0
- n—oo ) iy ai(x)
for the eventually periodic continued fraction
x = [a1(x), az(x), as(x),...] = [b1, ..., bm, 1, -, ¢x) € (0,1)

where m, k € N.

Proof. Let max{by,...,bm,c1,...,ck} = M. We note that g,(x) >
qn([1]) and a;(z) < M from the above Lemma.

li(z) = liminfmggiqn(x) > liminf w = lim %’L(M)_
N n—oo }ilqai(x) T ommee 3O Mmoo 3L, M
Therefore

. 2logqn([1]) 2, 145
> _— . = —
li(z) > nhm - log 5

> 0.
O

PROPOSITION 3.7. ([3]) Let x € (0,1). If ly(z) > log?2, then Q' (z) =
oo, where Q(x) is the Minkowski question mark function. Similarly, if
0 <li(z) <log2, then Q'(x) = 0.

Proof. Tt follows from the corollary 6.2 of [3]. O

THEOREM 3.8. For the positive integer a < 4, Q'([a]) = oo, where
Q(z) is the Minkowski question mark function. For the integer a > 5,

Q'([a]) = 0.
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Proof. Let f(z) = 2 log £V V;ZH. We note that f(1), f(2), f(3), f(4) >
log2 and f(5), f(6) < log2. Putting g(z) = 2 log 522, we have f(z) <

2
g(xz) for x > 2 and ¢'(z) < 0 for x > 2, which means that g(z)
is decreasing for z > 2. Observing ¢(7) < log2, we easily see that
l1([a]) = f(a) < log2 for the integer a > 5. It follows from the above

Proposition. ]
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