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A NOTE ON THE GENERALIZED VARIATIONAL
INEQUALITY WITH OPERATOR SOLUTIONS
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ABSTRACT. In a series of papers [3, 4, 5], the author developed the
generalized vector variational inequality with operator solutions (in
short, GOVVI) by exploiting variational inequalities with operator
solutions (in short, OVVI) due to Domokos and Kolumbén [2]. In
this note, we give an extension of the previous work [4] in the set-
ting of Hausdorff locally convex spaces. To be more specific, we
present an existence of solutions of (GVVI) under the weak pseu-
domonotonicity introduced in Yu and Yao [7] within the framework
of (GOVVI).

1. Introduction

In a series of papers [3, 4, 5], the author developed the generalized
vector variational inequality with operator solutions (in short, GOVVI)
by exploiting variational inequalities with operator solutions (in short,
OVVI) due to Domokos and Kolumbéan [2]. They designed (OVVI) to
provide a unified approach to several kinds of (VI) and (VVI) prob-
lems in Banach spaces, and successfully described those problems in a
wider context of (OVVI). Actually, motivated by the work of Domokos
and Kolumbén [2], in a former paper [3], the author proposed (GOVVI)
which extends (OVVI) into a multi-valued case under a standard pseudo-
monotonicity of the given operator. In a recent work [4], a more general
pseudomonotone operator was treated in a normed space. As a contin-
uation of works, in this note, we give an extension of the previous result
[4, Theorem 3.2] in the setting of Hausdorff locally convex space. To
be more specific, we present an existence of solutions of (GVVI) under
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the weak pseudomonotonicity introduced in Yu and Yao [7] within the
framework of (GOVVI).

2. Preliminaries

Let E, I’ be Hausdorff t.v.s., and let X be a nonempty convex subset
of E. Let C7 : X — F be a multifunction such that for each x €
X, Cq(z) is a convex cone in F with int Cy(z) # () and Cy(x) # F. Let
L(E,F) be the space of all continuous linear operators from E to F
and 71 : X — L(E, F) a multifunction. From now on, unless otherwise
specified, we work under the following settings:

Let X’ be a nonempty convex subset of L(E,F) and T : X’ — E be
a multifunction. Let C' : X’ — F be a multifunction such that for each
f e X', C(f)is aconvex cone in F with 0 ¢ C(f). Then the generalized
variational inequalities with operator solutions (GOVVI) is defined as
follows:

Find fo € X' such that Vf € X', 3z € T(fo) with (f — fo,z) ¢ C(fo).

Consider the multifunction T} : X — L(E, F). Then T} is said to be
(1) weakly C1-pseudomonotone if Vz,y € X and Vs € T1(z), we have

(s,y—x) ¢ —intC(z) implies (t,y—x) ¢ —intC(z) for some t € T1(y);
(2) generalized hemicontinuous if for any x,y € X, the multifunction
a— (Th(z+aly—x)),y —x), Yael0,1]
is upper semicontinuous at 0, where
(Ty(@+aly - ),y - 2) = {(s,y — 2) | s € Ty(z + aly — 2))}.

In regard to monotonicity and continuity of T', two analogous defini-
tions to those of T} in the above are necessary; T : X' — FE is said to
E)le)’ weakly C-pseudomonotone if for any f,g € X' and for any s € T(f),

(g—f,s) ¢ C(f) implies (g— f,t) ¢ C(f) for some t e T(g); and
(2)" generalized hemicontinuous if for any f,g € X', the multifunction
a—(g— [, T(f+alg—1[)), YVael0,1]

is upper semicontinuous at 0, where
(9= FT(f+alg= ) =g~ f.s)|s€T(f+alg— 1))}

Recall that a locally convex space (in short, l.c.s.) FE is said to be
bornological if every circled, convex subset A C F which absorbs every
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bounded set in F is a neighborhood of 0. Equivalently, a bornological
space is a l.c.s. on which each seminorm that is bounded on bounded
sets, is continuous. Now, we introduce a fixed-point theorem [6], origi-
nally established in [1], which plays the role of a basic tool to derive our
main result.

LEMMA 2.1. Let X be a nonempty convex subset of a locally convex
space E. Let S, V : X — X be two multifunctions. Suppose that

(i) for each z € X, S(z) # 0;

(ii) for each z € X, coS(z) C V(x) where coS(x) stands for the convex
hull of S(x);

(iii) X = J{intxS71(2) | z € X};

(iv) the image V(X) of the map V is contained in a compact subset D
of X.

Then V has a fixed point z¢ € X; that is, 29 € V(x0).

3. Main result

We begin with the following lemma in [4, Lemma 3.1] without proof.

LEMMA 3.1. Let T : X' — E be a weakly C-pseudomonotone and
generalized hemicontinuous multifunction with T(f) # () for all f €
X'. Let W : X' — F be defined by W(f) = F \ C(f) such that the
graph Gr(W) of W is closed in X' x F where L(E, F) is endowed with
either the topology of pointwise convergence or the topology of bounded
convergence. Then the following two problems are equivalent:

(i) Find f € X' such that Vg € X', 3z € T(f) with (g — f,x) ¢ C(f).
(ii) Find f € X’ such that Vg € X', 3z € T(g) with {(g— f,z) ¢ C(f).

THEOREM 3.2. Let X’ be a nonempty convex subset of L(E, F') en-
dowed with the topology of bounded convergence. Let T : X' — E
be a weakly C-pseudomonotone and generalized hemicontinuous multi-
function such that T(f) is nonempty and compact for all f € X'. Let
W : X' — F be defined by W(f) = F\C(f) such that the graph Gr(W)
of W is closed in X' x F. Assume that there exists a compact subset D
of X' satisfying

{g€ X' | 3f € X" such that Yz € T(f), (9— f,z) € C(f)} € D. (1)
Then (GOVVI) is solvable.
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Proof. First note that L(FE, F) equipped with the topology of bounded
convergence is a locally convex space. We define two multifunctions
S, V:X"— X' to be

S(f): = {geX'|VzeTl(g), (9 f,z) e C(f)},
V(f): = {geX'|VeeT(f), (9 f.x)cC(f)}

The proof is organized in the following parts.

(i) It is clear that for each f € X', V(f) is convex.

(ii) Since T is weakly C-pseudomonotone, we have S(f) C V(f). By (i),
we have coS(f) C V(f) for all f € X'.

(iii) V has no fixed point because 0 ¢ C(f) for all f € X'.

(iv) For each g € X/, S71(g) is open in X’. In fact, let {f\} be a net
in (S71(g))¢ convergent to f € X’. Then g ¢ S(fy) and hence for some
Ty € T(g)v

(9= Fxma) & C(fr)

Thus (g — fr,zx) € W(fr). As T(g) is compact, we may assume that
x) — x for some = € T(g). Since L(E, F') is endowed with the topology
of bounded convergence and T'(g) is compact, (g — f,zx) — (9 — [, z).
By virtue of the closedness of Gr(W), we have (f, (g — f,z)) € Gr(W),
that is, (g — f,z) ¢ C(f) for the particular z € T'(g). Hence g ¢ S(f),
so f € (S7Y(g))¢. This shows that (S~1(g))¢ is closed, i.e., S~!(g) is
open in X’. Thus X’ = [J{intx:S~'(g9) | g € X'}.

(v) By (1), we have V(X') C D.

(vi) From (i)-(v), we see, by Lemma 2.1, there must be an fy € X’ such
that S(fo) = 0, namely,

Vg € X', 3x € T(g) such that (g — fo,z) & C(fo).

It follows from Lemma 3.1 that fj is a solution of (GOVVI). This com-
pletes the proof. O

As a direct consequence of Theorem 3.2, the following generalized VVI
in a locally convex space is derived, which is a generalization of the
corresponding Theorem 3.2 in [4].

THEOREM 3.3. LetY be a bornological I.c.s. and let Z be a Hausdorff
Lc.s. Let X be a nonempty convex subset of Y and Cy : X — Z be a
multifunction such that for each v € X, Ci(x) is a convex cone in Z
with intCy(z) # 0 and Ci(z) # Z. Let Th : X — L(Y,Z) be a weakly
C1-pseudomonotone and generalized hemicontinuous multifunction with
nonempty compact values where L(Y, Z) is the Hausdorff l.c.s. equipped
with the topology of bounded convergence. Let W1 : X — Z be defined
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by Wi(x) = Z \ —intCy(x) such that the graph Gr(Wi) of W is closed
in X x Z. Assume that there exists a compact subset D of X satisfying

{r € X | Jy € X such that ¥Vt € T1(y), (t,z—y) € C1(y)} C D. (2)
Then there exists xo € X such that
Vo € X, 3t € Ti(xo) with (t,z — xo) ¢ —intC1(zo).

Proof. We consider E = L(Y, Z) as the Hausdorff l.c.s. of the contin-
uous linear operators between Y and Z equipped with the topology of
bounded convergence, and F' = Z. Define a mapping ¢ : Y — L(E, F)
by ¢(xz) = fr where fy(I) = (l,z) for all | € E. This ¢ is linear
and injective. Indeed, assume that I; — [ in F. This implies that
Ve € Y, (li,x) — (l,x) in F = Z. Thus f;(l;) — fz(I) in F, so
fo € L(E,F). The linearity of ¢ is obvious. To show the injectivity
of ¢, it suffices to check that for each nonzero z € Y, there exists an
[ € E such that (I,z) # 0. By the separation theorem, we can find a
g € Y* with g(x) = 1. Define a linear operator [ : Y — Z by

(l,y) = g(y)zo for some zy # 0 in Z.

Clearly | € L(Y, Z) and (l,z) = g(x)z0 = 20 # 0. Now let X' = ¢(X)
and D' = ¢(D). Suppose that L(F, F') is equipped with the topology of
bounded convergence. Then ¢ : Y — ¢(Y) is a homeomorphism by the
proof of Theorem 3.4 in [5].

Now we define T: X' - E,C: X' - Fand W : X' — F as follows:

T(fz) = Th(z), C(fa) = —intCy(z), W(fz) = Wi(z).

Then 0 ¢ C(f;) because intC(z) is a proper convex cone of Z. The
proof is organized in the following parts.

(i) The weak C1-pseudomonotonicity of 77 implies the weak C-pseudomo-
notonicity of 7. In fact, for any f,, f, € X" and s € T(f,) = T1(z),

(fy = fo,8) ¢ C(fa) = (s,y—x) ¢ —intCi(x)
= (t,y—x) ¢ —intCy(z) for some t € T (y)
= (fy — fo.t) ¢ C(fz) for somet € T(fy).

(ii) The generalized hemicontinuity of 7 amounts to that of 7. Actually,
for any f;, f, € X' and a € [0,1],

a= (fy = fo, T(fo + alfy = f2))) = (Ti(z + aly — 2)),y — x)

is upper semicontinuous at 0%.
(iii) By the hypothesis, T'(f;) = T1(z) is nonempty and compact.
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(iv) The graph Gr(W) of W is closed in X’ x F. Indeed, let {f;,} be a
sequence in X’ convergent to f, € X'. Let w; € W(fs,) = Wi(a;) such
that w; — w in F. Since ¢ is a homeomorphism, ¢~ (f,,) = 7, — = =
#~(fz). Because the graph Gr(W;) of W is closed in X x Z, we have
w € Wi(x) = W(f). This implies that Gr(W) is closed in X’ x F.

(v) By (2), we see that

{fe€ X' | 3f, € X' st.Vt € T(f,), (fe—fy,t) € C(f,)} € D' = $(D).

It follows from Theorem 3.1 that there exists f,, € X’ such that for
each f, € X', there is t € T(fy,) with (fo — fz,,t) & C(fs,)- Therefore,
there exists xg € X such that

Ve e X, 3t € Ti(xg) with (t,z — zo) ¢ —intC1 (o).
This completes the proof. O
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