A NOTE ON THE GENERALIZED VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

Sangho Kum*

ABSTRACT. In a series of papers [3, 4, 5], the author developed the generalized vector variational inequality with operator solutions (in short, GOVVI) by exploiting variational inequalities with operator solutions (in short, OVVI) due to Domokos and Kolumbán [2]. In this note, we give an extension of the previous work [4] in the setting of Hausdorff locally convex spaces. To be more specific, we present an existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [7] within the framework of (GOVVI).

1. Introduction

In a series of papers [3, 4, 5], the author developed the generalized vector variational inequality with operator solutions (in short, GOVVI) by exploiting variational inequalities with operator solutions (in short, OVVI) due to Domokos and Kolumbán [2]. They designed (OVVI) to provide a unified approach to several kinds of (VI) and (VVI) problems in Banach spaces, and successfully described those problems in a wider context of (OVVI). Actually, motivated by the work of Domokos and Kolumbán [2], in a former paper [3], the author proposed (GOVVI) which extends (OVVI) into a multi-valued case under a standard pseudomonotonicity of the given operator. In a recent work [4], a more general pseudomonotone operator was treated in a normed space. As a continuation of works, in this note, we give an extension of the previous result [4, Theorem 3.2] in the setting of Hausdorff locally convex space. To be more specific, we present an existence of solutions of (GVVI) under

Received April 21, 2009; Accepted August 14, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47J20; Secondary 49J40.

Key words and phrases: vector variational inequality, weakly C-pseudemonotone operator, generalized hemicontinuity, fixed point theorem.

^{*}This work was supported by the research grant of the Chungbuk National University in 2008.

the weak pseudomonotonicity introduced in Yu and Yao [7] within the framework of (GOVVI).

2. Preliminaries

Let E, F be Hausdorff t.v.s., and let X be a nonempty convex subset of E. Let $C_1: X \to F$ be a multifunction such that for each $x \in X, C_1(x)$ is a convex cone in F with int $C_1(x) \neq \emptyset$ and $C_1(x) \neq F$. Let L(E, F) be the space of all continuous linear operators from E to F and $C_1: X \to L(E, F)$ a multifunction. From now on, unless otherwise specified, we work under the following settings:

Let X' be a nonempty convex subset of L(E, F) and $T: X' \to E$ be a multifunction. Let $C: X' \to F$ be a multifunction such that for each $f \in X'$, C(f) is a convex cone in F with $0 \notin C(f)$. Then the generalized variational inequalities with operator solutions (GOVVI) is defined as follows:

Find $f_0 \in X'$ such that $\forall f \in X', \exists x \in T(f_0)$ with $\langle f - f_0, x \rangle \notin C(f_0)$.

Consider the multifunction $T_1: X \to L(E, F)$. Then T_1 is said to be

(1) weakly C_1 -pseudomonotone if $\forall x, y \in X$ and $\forall s \in T_1(x)$, we have

$$\langle s, y - x \rangle \notin -\text{int}C_1(x) \text{ implies } \langle t, y - x \rangle \notin -\text{int}C_1(x) \text{ for some } t \in T_1(y);$$

(2) generalized hemicontinuous if for any $x, y \in X$, the multifunction

$$\alpha \mapsto \langle T_1(x + \alpha(y - x)), y - x \rangle, \ \forall \alpha \in [0, 1]$$

is upper semicontinuous at 0^+ , where

$$\langle T_1(x + \alpha(y - x)), y - x \rangle = \{\langle s, y - x \rangle \mid s \in T_1(x + \alpha(y - x))\}.$$

In regard to monotonicity and continuity of T, two analogous definitions to those of T_1 in the above are necessary; $T: X' \to E$ is said to be

(1)' weakly C-pseudomonotone if for any $f, g \in X'$ and for any $s \in T(f)$,

$$\langle g-f,s\rangle\notin C(f)$$
 implies $\langle g-f,t\rangle\notin C(f)$ for some $t\in T(g)$; and

(2)' generalized hemicontinuous if for any $f, g \in X'$, the multifunction

$$\alpha \mapsto \langle g - f, T(f + \alpha(g - f)) \rangle, \quad \forall \alpha \in [0, 1]$$

is upper semicontinuous at 0^+ , where

$$\langle g - f, T(f + \alpha(g - f)) \rangle = \{ \langle g - f, s \rangle \mid s \in T(f + \alpha(g - f)) \}.$$

Recall that a locally convex space (in short, l.c.s.) E is said to be bornological if every circled, convex subset $A \subset E$ which absorbs every

bounded set in E is a neighborhood of 0. Equivalently, a bornological space is a l.c.s. on which each seminorm that is bounded on bounded sets, is continuous. Now, we introduce a fixed-point theorem [6], originally established in [1], which plays the role of a basic tool to derive our main result.

LEMMA 2.1. Let X be a nonempty convex subset of a locally convex space E. Let S, $V: X \to X$ be two multifunctions. Suppose that

- (i) for each $x \in X$, $S(x) \neq \emptyset$;
- (ii) for each $x \in X$, $\cos(x) \subset V(x)$ where $\cos(x)$ stands for the convex hull of S(x);
- (iii) $X = \bigcup \{ \operatorname{int}_X S^{-1}(z) \mid z \in X \};$
- (iv) the image V(X) of the map V is contained in a compact subset D of X.

Then V has a fixed point $x_0 \in X$; that is, $x_0 \in V(x_0)$.

3. Main result

We begin with the following lemma in [4, Lemma 3.1] without proof.

LEMMA 3.1. Let $T: X' \to E$ be a weakly C-pseudomonotone and generalized hemicontinuous multifunction with $T(f) \neq \emptyset$ for all $f \in X'$. Let $W: X' \to F$ be defined by $W(f) = F \setminus C(f)$ such that the graph Gr(W) of W is closed in $X' \times F$ where L(E, F) is endowed with either the topology of pointwise convergence or the topology of bounded convergence. Then the following two problems are equivalent:

- (i) Find $f \in X'$ such that $\forall g \in X'$, $\exists x \in T(f)$ with $\langle g f, x \rangle \notin C(f)$.
- (ii) Find $f \in X'$ such that $\forall g \in X'$, $\exists x \in T(g)$ with $\langle g f, x \rangle \notin C(f)$.

THEOREM 3.2. Let X' be a nonempty convex subset of L(E,F) endowed with the topology of bounded convergence. Let $T: X' \to E$ be a weakly C-pseudomonotone and generalized hemicontinuous multifunction such that T(f) is nonempty and compact for all $f \in X'$. Let $W: X' \to F$ be defined by $W(f) = F \setminus C(f)$ such that the graph Gr(W) of W is closed in $X' \times F$. Assume that there exists a compact subset D of X' satisfying

 $\{g \in X' \mid \exists f \in X' \text{ such that } \forall x \in T(f), \ \langle g - f, x \rangle \in C(f)\} \subset D.$ (1) Then (GOVVI) is solvable. *Proof.* First note that L(E,F) equipped with the topology of bounded convergence is a locally convex space. We define two multifunctions $S,\ V:X'\to X'$ to be

$$S(f): = \{g \in X' \mid \forall x \in T(g), \langle g - f, x \rangle \in C(f)\},$$

$$V(f): = \{g \in X' \mid \forall x \in T(f), \langle g - f, x \rangle \in C(f)\}.$$

The proof is organized in the following parts.

- (i) It is clear that for each $f \in X'$, V(f) is convex.
- (ii) Since T is weakly C-pseudomonotone, we have $S(f) \subset V(f)$. By (i), we have $\cos(f) \subset V(f)$ for all $f \in X'$.
- (iii) V has no fixed point because $0 \notin C(f)$ for all $f \in X'$.
- (iv) For each $g \in X'$, $S^{-1}(g)$ is open in X'. In fact, let $\{f_{\lambda}\}$ be a net in $(S^{-1}(g))^c$ convergent to $f \in X'$. Then $g \notin S(f_{\lambda})$ and hence for some $x_{\lambda} \in T(g)$,

$$\langle g - f_{\lambda}, x_{\lambda} \rangle \notin C(f_{\lambda}).$$

Thus $\langle g-f_\lambda, x_\lambda \rangle \in W(f_\lambda)$. As T(g) is compact, we may assume that $x_\lambda \to x$ for some $x \in T(g)$. Since L(E,F) is endowed with the topology of bounded convergence and T(g) is compact, $\langle g-f_\lambda, x_\lambda \rangle \to \langle g-f, x \rangle$. By virtue of the closedness of Gr(W), we have $(f, \langle g-f, x \rangle) \in Gr(W)$, that is, $\langle g-f, x \rangle \notin C(f)$ for the particular $x \in T(g)$. Hence $g \notin S(f)$, so $f \in (S^{-1}(g))^c$. This shows that $(S^{-1}(g))^c$ is closed, i.e., $S^{-1}(g)$ is open in X'. Thus $X' = \bigcup \{ \operatorname{int}_{X'} S^{-1}(g) \mid g \in X' \}$.

- (v) By (1), we have $V(X') \subset D$.
- (vi) From (i)-(v), we see, by Lemma 2.1, there must be an $f_0 \in X'$ such that $S(f_0) = \emptyset$, namely,

$$\forall g \in X', \ \exists x \in T(g) \text{ such that } \langle g - f_0, x \rangle \notin C(f_0).$$

It follows from Lemma 3.1 that f_0 is a solution of (GOVVI). This completes the proof.

As a direct consequence of Theorem 3.2, the following generalized VVI in a locally convex space is derived, which is a generalization of the corresponding Theorem 3.2 in [4].

THEOREM 3.3. Let Y be a bornological l.c.s. and let Z be a Hausdorff l.c.s. Let X be a nonempty convex subset of Y and $C_1: X \to Z$ be a multifunction such that for each $x \in X$, $C_1(x)$ is a convex cone in Z with $\operatorname{int} C_1(x) \neq \emptyset$ and $C_1(x) \neq Z$. Let $T_1: X \to L(Y, Z)$ be a weakly C_1 -pseudomonotone and generalized hemicontinuous multifunction with nonempty compact values where L(Y, Z) is the Hausdorff l.c.s. equipped with the topology of bounded convergence. Let $W_1: X \to Z$ be defined

by $W_1(x) = Z \setminus -intC_1(x)$ such that the graph $Gr(W_1)$ of W_1 is closed in $X \times Z$. Assume that there exists a compact subset D of X satisfying

$$\{x \in X \mid \exists y \in X \text{ such that } \forall t \in T_1(y), \ \langle t, x - y \rangle \in C_1(y)\} \subset D.$$
 (2)

Then there exists $x_0 \in X$ such that

$$\forall x \in X, \exists t \in T_1(x_0) \text{ with } \langle t, x - x_0 \rangle \notin -intC_1(x_0).$$

Proof. We consider E = L(Y, Z) as the Hausdorff l.c.s. of the continuous linear operators between Y and Z equipped with the topology of bounded convergence, and F = Z. Define a mapping $\phi: Y \to L(E, F)$ by $\phi(x) = f_x$ where $f_x(l) = \langle l, x \rangle$ for all $l \in E$. This ϕ is linear and injective. Indeed, assume that $l_i \to l$ in E. This implies that $\forall x \in Y, \ \langle l_i, x \rangle \to \langle l, x \rangle$ in F = Z. Thus $f_x(l_i) \to f_x(l)$ in F, so $f_x \in L(E, F)$. The linearity of ϕ is obvious. To show the injectivity of ϕ , it suffices to check that for each nonzero $x \in Y$, there exists an $l \in E$ such that $\langle l, x \rangle \neq 0$. By the separation theorem, we can find a $g \in Y^*$ with g(x) = 1. Define a linear operator $l: Y \to Z$ by

$$\langle l, y \rangle = g(y)z_0$$
 for some $z_0 \neq 0$ in Z.

Clearly $l \in L(Y, Z)$ and $\langle l, x \rangle = g(x)z_0 = z_0 \neq 0$. Now let $X' = \phi(X)$ and $D' = \phi(D)$. Suppose that L(E, F) is equipped with the topology of bounded convergence. Then $\phi : Y \to \phi(Y)$ is a homeomorphism by the proof of Theorem 3.4 in [5].

Now we define $T: X' \to E$, $C: X' \to F$ and $W: X' \to F$ as follows:

$$T(f_x) = T_1(x), C(f_x) = -\text{int}C_1(x), W(f_x) = W_1(x).$$

Then $0 \notin C(f_x)$ because $\operatorname{int} C_1(x)$ is a proper convex cone of Z. The proof is organized in the following parts.

(i) The weak C_1 -pseudomonotonicity of T_1 implies the weak C-pseudomonotonicity of T. In fact, for any f_x , $f_y \in X'$ and $s \in T(f_x) = T_1(x)$,

$$\langle f_y - f_x, s \rangle \notin C(f_x) \Rightarrow \langle s, y - x \rangle \notin -\mathrm{int}C_1(x)$$

 $\Rightarrow \langle t, y - x \rangle \notin -\mathrm{int}C_1(x) \text{ for some } t \in T_1(y)$
 $\Rightarrow \langle f_y - f_x, t \rangle \notin C(f_x) \text{ for some } t \in T(f_y).$

(ii) The generalized hemicontinuity of T_1 amounts to that of T. Actually, for any f_x , $f_y \in X'$ and $\alpha \in [0,1]$,

$$\alpha \mapsto \langle f_y - f_x, T(f_x + \alpha(f_y - f_x)) \rangle = \langle T_1(x + \alpha(y - x)), y - x \rangle$$

is upper semicontinuous at 0^+ .

(iii) By the hypothesis, $T(f_x) = T_1(x)$ is nonempty and compact.

(iv) The graph Gr(W) of W is closed in $X' \times F$. Indeed, let $\{f_{x_i}\}$ be a sequence in X' convergent to $f_x \in X'$. Let $w_i \in W(f_{x_i}) = W_1(x_i)$ such that $w_i \to w$ in F. Since ϕ is a homeomorphism, $\phi^{-1}(f_{x_i}) = x_i \to x = \phi^{-1}(f_x)$. Because the graph $Gr(W_1)$ of W_1 is closed in $X \times Z$, we have $w \in W_1(x) = W(f_x)$. This implies that Gr(W) is closed in $X' \times F$. (v) By (2), we see that

 $\{f_x \in X' \mid \exists f_y \in X' \text{ s.t. } \forall t \in T(f_y), \ \langle f_x - f_y, t \rangle \in C(f_y)\} \subset D' = \phi(D).$ It follows from Theorem 3.1 that there exists $f_{x_0} \in X'$ such that for each $f_x \in X'$, there is $t \in T(f_{x_0})$ with $\langle f_x - f_{x_0}, t \rangle \notin C(f_{x_0})$. Therefore, there exists $x_0 \in X$ such that

$$\forall x \in X, \exists t \in T_1(x_0) \text{ with } \langle t, x - x_0 \rangle \notin -\text{int}C_1(x_0).$$

This completes the proof.

References

- [1] H. Ben-El-Mechaiekh, Fixed Points for Compact Set-Valued Maps, Questions and Answers in General Topology 10 (1992), 153–156.
- A. Domokos and J. Kolumbán, Variational inequalities with operator solutions,
 J. Global Optim. 23 (2002), 99-110.
- [3] S. H. Kum and W. K. Kim, Generalized vector variational and quasi-variational inequalities with operator solutions, J. Global Optim. 32 (2005), 581–595.
- [4] S. H. Kum, A variant of the generalized vector variational inequalities with operator solutions, Commun. Korean Math. Soc. 21 (2006), 665–673.
- [5] S. H. Kum and W. K. Kim, Applications of generalized variational and quasivariational inequalities with operator solutions in a TVS, J. Optim. Theory Appl. 133 (2007), 65–75.
- [6] S. Park, Remarks on a Fixed-Point Theorem of Ben-El-Mechaiekh, Nonlinear Analysis and Convex Analysis, Proceedings of NACA 98, Niigata, Japan, 1998, World Scientific, Singapore, pp. 79–86, 1999.
- [7] S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89 (1996), 749-769.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: shkum@cbnu.ac.kr