JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 22, No. 3, September 2009

SOME RESULTS ON STRONG π -regularity

Yong Uk Cho*

ABSTRACT. We will introduce some properties of strongly reduced nearrings and the notion of left π -regular near-ring. Also, we will study for right π -regular, strongly left π -regular, strongly right π -regular and strongly π regular. Next, we may characterize the strongly π -regular near-rings with related strong reducibility.

1. Introduction

A near-ring R is an algebraic system $(R, +, \cdot)$ with two binary operations + and \cdot such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, \cdot) is a semigroup and (a + b)c = ac + bc for all a, b, c in R. If R has a unity 1, then R is called *unital*. A near-ring R with the extra axiom a0 = 0 for all $a \in R$ is said to be zero symmetric.

We will use the following notations: Given a near-ring R, $R_0 = \{a \in R \mid a0 = 0\}$ which is called the zero symmetric part of R, $R_c = \{a \in R \mid a0 = a\}$ which is called the *constant part* of R. Obviously, we see that R_0 and R_c are subnear-rings of R, but R_d is a semigroup under multiplication.

Mason [3] introduced the notions of left and right regularities and characterized left regular zero-symmetric unital near-rings. Also, several authors ([2], [3], [4], [6] etc.) studied them. In particular, Reddy and Murty [6] observed that every left regular near-ring has some interesting property (*) with conditions (i) and (ii).

A near-ring R is called (Von Neumann) regular if for any element $a \in R$, there exists an element x in R such that a = axa. Such an element a is called regular [5].

Received April 09, 2009; Revised August 17, 2009; Accepted August 20, 2009.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 16Y30.

Key words and phrases: strongly reduced, left π -regular, right π -regular, strongly left π -regular, strongly right π -regular and strongly π -regular.

Yong Uk Cho

A near-ring R is said to be *left regular* if, for each $a \in R$, there exists $x \in R$ such that $a = xa^2$. Such an element a is called *left regular*. This concept is equivalent to the concept of strong regularity in [2]. Right regularity is defined in a symmetric way.

For more notations and basic results, we shall refer to Pilz [5].

2. Results

Also, we say that R is reduced if R has no nonzero nilpotent elements, that is, for each a in R, $a^n = 0$, for some positive integer n implies a = 0. McCoy proved that R is reduced if and only if for each a in R, $a^2 = 0$ implies a = 0.

A near-ring R is said to be strongly reduced if, for any $a \in R$, $a^2 \in R_c$ implies $a \in R_c$ which is defined in [1]. Obviously R is strongly reduced if and only if, for $a \in R$ and any positive integer $n, a^n \in R_c$ implies $a \in R_c$. We see that a strongly reduced near-ring is reduced, but not conversely. Clearly, if R is a zero-symmetric near-ring, then R is strongly reduced if and only if Ris reduced [1].

We begin with to introduce the following basic properties of strong reducibility.

LEMMA 1 [1]. (1) Every strongly regular near-ring is strongly reduced.

(2) Every right regular near-ring is strongly reduced.

(3) Every commutative integral near-ring is strongly reduced.

LEMMA 2 [1]. Let R be a strongly reduced near-ring. Then we have the following conditions.

(1) If for any $a, b \in R$ with $ab \in R_c$, then $ba \in R_c$, and $\forall x \in R, axb, bxa \in R_c$. Furthermore, $ab^n \in R_c$ implies $ab \in R_c$, for each positive integer n.

(2) If for any $a, b \in R$ with ab = 0, then $ba = b0 = (ba)^2$. Moreover, $ab^n = 0$ implies ab = 0, for any positive integer n.

LEMMA 3. Let R be a strongly reduced near-ring. If for any $a, b \in R$ with ab = 0 and $a^2 = a0$, then a = 0.

294

Proof. Suppose that for any $a, b \in R$ with ab = 0 and $a^2 = a0$. Then $a^2 = a0 \in R_c$. Strong reducibility implies that $a \in R_c$. Hence we obtain that a = a0 = a0b = ab = 0. \Box

From this Lemma 3, we have the following important statement.

COROLLARY 4. Every strongly reduced near-ring is reduced.

By Reddy and Murty [6], we say that a near-ring R has the property (*) if it satisfies the conditions:

(i) for any $a, b \in R$, ab = 0 implies ba = b0.

(ii) for $a \in R$, $a^3 = a^2$ implies $a^2 = a$.

Here, clearly we see that strong reducibility is equivalent to the condition (ii) and strong reducibility implies condition (i) by Lemma 2 (2).

A near-ring R is said to be π -regular if for each element $a \in R$, there exists a positive integer n such that a^n is a regular element, that is, $a^n = a^n x a^n$, for some $x \in R$. Such an element a is called π -regular.

A near-ring R is said to be *left* π -*regular* if, for each $a \in R$, there exists a positive integer n such that a^n is left regular. Such an element a is called *left* π -*regular*. Right π -regularity is defined in a symmetric way.

A near-ring R is called strongly left π -regular if R is left π -regular and π -regular, similarly, we can define strongly right π -regular. A strongly left π -regular and strongly right π -regular near-ring is called strongly π -regular near-ring.

Every regular near-ring is π -regular, but not conversely as following examples.

EXAMPLES 5. Let $R = \{0, a, b, c\}$ be an additive Klein 4-group. This is a near-ring with the following multiplication table (p. 408 [5]):

•	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	c	b
c	0	a	b	c

Yong Uk Cho

This near-ring R is a zero-symmetric near-ring with identity c. Moreover, R is π -regular, but not regular. Indeed, 0 = 0a0, $a^2 = a^2ba^2$, $b^4 = b^4ab^4$, $c^2 = c^2cc^2$, but a is not a regular element.

On the other hand, we can find lots of examples of left π -regular near-rings which are not left regular, also, for right π -regular, strongly right π -regular and strongly π -regular.

The purpose of this paper is to prove that the notions of left π -regularity, strongly left π -regularity, strongly right π -regularity and strong π -regularity are all equivalent conditions under strong reducibility, also to find some characterizations of strong regularity.

PROPOSITION 6. Let R be a strongly reduced left π -regular near-ring. Then R is π -regular. Furthermore, R is strongly left π -regular.

Proof. Let $a \in R$. Left π -regularity of R implies that $a^n = xa^{2n}$ for some $x \in R$ and some positive integer n. From this equation, we have that $(a^n - a^n xa^n)a^n = 0$. By Lemma 2 (2), $a^n(a^n - a^n xa^n) = a^n 0$ and $a^n xa^n(a^n - a^n xa^n) = a^n xa^n 0$. Thus we have

$$(a^{n} - a^{n}xa^{n})^{2} = a^{n}(a^{n} - a^{n}xa^{n}) - a^{n}xa^{n}(a^{n} - a^{n}xa^{n}) = (a^{n} - a^{n}xa^{n})0.$$

This equality implies that $a^n - a^n x a^n = 0$ using Lemma 3. Consequently R is π -regular. \Box

PROPOSITION 7. Let R be a strongly reduced left π -regular near-ring. Then R is right π -regular. Furthermore, R is strongly right π -regular.

Proof. Let $a \in R$. Proposition 6 and left π -regularity of R imply that $a^n = xa^{2n} = a^n xa^n$ for some $x \in R$ and some positive integer n. From this last equation, we have that $(xa^n - a^n x)a^n = 0$ and $(xa^n - a^n x)a^n x = 0$. By Lemma 2 (2), we see that $a^n(xa^n - a^n x) = a^n 0$ and $a^n x(xa^n - a^n x) = a^n x0$. Thus we have

$$(xa^{n} - a^{n}x)^{2} = xa^{n}(xa^{n} - a^{n}x) - a^{n}x(xa^{n} - a^{n}x) = (xa^{n} - a^{n}x)0.$$

296

 $a^n x$. Hence

$$a^n = xa^{2n} = (a^n x)a^n = (xa^n)a^n = xa^{2n}.$$

Consequently R is right π -regular. \Box

From Propositions 6 and 7, we obtain the following statement.

THEOREM 8. The following statements are equivalent for any strongly reduced near-ring R:

- (1) R is a left π -regular near-ring.
- (2) R is a strongly left π -regular near-ring.
- (3) R is a strongly π -regular near-ring.

References

- [1] Y. Cho, On strong form of reducedness, Honam Math. J. 30 (2008), 1-7.
- [2] Y. Cho, Characterizations of strong regularity in near-rings, to appear, (2009)
- [3] G. Mason, A note on strong forms of regularity for near-rings, Indian J. of Math. 40 (1998), no. 2, 149-153.
- [4] C. V. L. N. Murty, Generalized near-fields, Proc. Edinburgh Math. Soc. 27 (1984), 21-24.
- [5] G. Pilz, Near-Rings, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1983.
- [6] Y. V. Reddy, and C. V. L. N. Murty, On strongly regular near-rings, Proc. Edinburgh Math. Soc. 27 (1984), 61-64.

* Department of Mathematics Silla University Pusan 617-736, Republic of Korea

E-mail: yucho@silla.ac.kr