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CONTINUITY OF LINEAR
OPERATOR INTERTWINING WITH
DECOMPOSABLE OPERATORS AND
PURE HYPONORMAL OPERATORS

SUNG-WOOK PARK*, HYUK HAN** AND SE WON PARK™**

ABSTRACT. In this paper, we show that for a pure hyponormal op-
erator the analytic spectral subspace and the algebraic spectral sub-
space are coincide. Using this result, we have the following result:
Let T be a decomposable operator on a Banach space X and let S be
a pure hyponormal operator on a Hilbert space H. Then every linear
operator 0 : X — H with S0 = 0T is automatically continuous.

1. Introduction

Let X and Y be Banach spaces and consider a linear operator

f : X — Y. The basic automatic continuity problem is to derive

the continuity of # from some prescribed algebraic conditions. For

example, if § : X — Y is a linear operator intertwining with T €
L(X) and S € L(Y), that is 0T = S6, one may look for algebraic

conditions on 1" and S which force 8 to be continuous.

The study of continuity of a linear operator € intertwining with

T and S was initiated by Johnson and Sinclair [3]. In [3] necessary

conditions on T and S for the continuity of # were obtained for the

operator S with countable spectrum.
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In 1973 Vrbova presented an automatic continuity result concern-
ing an intertwining operator with operators having suitable spectral
decomposition properties [11].

In 1986 Laursen and Neumann introduced super-decomposable op-
erators in [6] in order to consider necessary conditions for automatic
continuity of intertwining operators: this class of operators contains
most of interesting examples of decomposable operators. Since [6],
the study of automatic continuity of intertwining linear operators has
been closely related to the classification of decomposable operators.

In this paper, we show that for a pure hyponormal operator the
analytic spectral subspace and the algebraic spectral subspace are co-
incide. Using this result, we have the following result: Let T be a
decomposable operator on a Banach space X and let S be a pure hy-
ponormal operator on a Hilbert space H. Then every linear operator

0 : X — H with S0 = 0T is automatically continuous.

2. Preliminaries

Throughout this paper we shall use the standard notions and some
basic results on the theory of decomposable operators and automatic
continuity theory. Let X be a Banach space over the complex plane
C. And let £(X) denote the Banach algebra of all bounded linear
operators on a Banach space X. Given an operator T' € £(X), Lat(T)
denotes the collection of all closed T-invariant linear subspaces of X,
and for an Y € Lat(T) T|Y denotes the restriction of 7" on Y.

DEFINITION 1. Let T': X — X be a linear operator on a Banach
space X. Let F' be a subset of the complex plane C. Consider the
class of all linear subspaces Y of X which satisfy (T'—\)Y =Y for
all A ¢ F' and let Ep(F) denote the span of all such subspaces Y
of X. Ep(F) is called an algebraic spectral subspace of T .

In the next Remark, we collect a number of results on algebraic
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spectral subspaces. These results are found in [7].
REMARK 2. (1) It is clear that (T'— A)Erp(F) = Ep(F) for all
A ¢ F as well so that it is the largest linear subspace with this
property.
(2) By the definition of the algebraic spectral subspace, it is clear
that
Er(Fy) C Ep(Fy) for Fy C Fs.

(3) Let A be a linear operator on a vector space X with AT = T A.
For a given subset F' of C and A ¢ F', we obtain

(T — NAEp(F) = A(T — \)Ep(F) = AEp(F).
By the maximality of Ep(F') we have
AEr(F) C Ep(F).

That is, the space Ep(F) is a hyper-invariant subspace of T'.
(4) It is well known that if {F,} is a family of subsets of C, then

ET(m Fo) = mET(Fa)-

A linear subspace Z of X is called a T-divisible subspace if
(T'—NZ =72 forall A eC.

Hence Er(0) is precisely the largest T-divisible subspace. There is
an operator which has non-trivial divisible subspaces. Indeed, the

Volterra operator has a non-trivial divisible subspace.

PROPOSITION 3. Let T € L(X). If Z is a closed T-divisible
subspace of X, then Z = {0}.

Proof. Let A € 0o(T'|Z), where 0o(T'|Z) denotes the boundary of
the spectrum of T' restricted to Z. By the general theory of Banach
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algebras, there exists a sequence (T},) of linear operators in Z with
|T.|| =1 for all n € N and T,,(T — \) — 0. Since (T'—\)Z = Z, by
the open mapping theorem, kB C (T'—\)B for some k > 0 where B
is the unit ball in Z. For sufficiently large n with |7,,(T — \)| < &,
we have

kT,B C T,(T — \)B C ~B.

o |

Then T,B C 1B, which contradicts the assumption that |T,[| = 1.
U

For a given T' € L(X), let o(T') and p(T') denote the spectrum and
the resolvent set of T', respectively. The local resolvent set pp(x) of T
at the point x € X is defined as the union of all open subsets U of C

for which there is an analytic function f : U — X which satisfies
(T —Nf(A) ==z forall NeU.

The local spectrum op(x) of T' at x is then defined as

or(z) = C\ pr(z).

Clearly, the local resolvent set pr(z) is open, and the local spectrum
or(x) is closed. For each x € X, the function f(\) : p(T) — X
defined by f(A\) = (T'— X\) !z is analytic on p(T) and satisfies

(T =N f(A) =x forall Xep(T).

Hence the resolvent set p(T) is always subset of pr(x) and hence o (z)
is always subset of ¢(T"). The analytic solutions occurring in the defi-
nition of the local resolvent set may be thought of as local extensions
of the function (T'— \)~'z. There is no uniqueness implied. If for
each x € X there is the unique analytic extension of (T'— \) "'z, then

T is said to have the single-valued extension property, abbreviated
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SVEP. Hence if T' has the SVEP, then there is the maximal analytic
extention of (T — \)"1z from p(T) to pr(x).

Given an arbitrary operator T' € L(X) and for any set F' C C, we
define the analytic spectral subspace of T by

Xr(F)={x€ X|or(z) C F}.

In the next Remark, we collect a number of results on analytic
spectral subspaces. These results are found in [7].
REMARK 4 (1) By the definition of the analytic spectral subspace,

it is clear that
XT(Fl) Q XT(FQ) for F1 Q FQ.

(2) It is well known that the space Xp(F') is a hyper-invariant
subspace of T'.

(3) It is easy to see that
Xr(F)=Xpr(Fno(T)).
(4) Forall A\ € C\ F,
(T = M) X7 (F) = Xr(F)
This implies that
Xr(F) C Ep(F) forall FCC.
(5) If {F,} is a family of subsets of C, then

XT(m Fa) = mXT(Fa)-

(6) It is well known that T has the SVEP if and only if X7 (0) = {0}.
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An operator T € L(X) is called decomposable if, for every open
covering {U,V} of the complex plane C, there exist Y, Z € Lat(T)
such that

o(TY)CU, o(T|Z)CV and Y + Z = X.

Decomposable operators are rich. For example, normal operators,
spectral operators in the sense of Dunford, operators with totally dis-
connected spectrums and hence compact operators are decomposable.

Let F(C) denote the family of all closed subsets of C and let
S(X) denote the family of all closed linear subspaces of X.

DEFINITION 5. (1) A map &(-) : F(C) — S(X) is called stable if
it satisfies the following two conditions:

(i) &) ={0}, &£(C)=X.
(i) E(Nori Fn) =N~ E(F,) for any sequence {F,} in F(C).

(2) Amap &(-) : F(C) — S(X) is called a spectral capacity if £(-)
is stable and satisfies the following condition:

(iil) X =3, E(G;) for every finite open cover {G;} of C.

We say that £(-) is order preserving if it preserves the inclusion
order. Clearly a stable map is order preserving. It is well known that
T is decomposable if and only if there exists a spectral capacity £(-)
such that £(F) € Lat(T) and o(T|E(F)) C F for each closed set
F C C. In this case the spectral capacity of a closed subset F' of C is
uniquely determined and it is the analytic spectral subspace Xp(F).

Let 6 be a linear operator from a Banach space X into a Banach

space Y. The space
S(0) = {y € Y : there is a sequence z,, — 0 in X and 0z, — y}

is called the separating space of 6. It is easy to see that G(0) is a closed
linear subspace of Y. By the closed graph theorem, # is continuous if
and only if &(0) = {0}. The following lemma is found in [10].
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LEMMA 6. Let X and Y be Banach spaces. If R is a continuous
linear operator from Y to a Banach space Z, and if 0 : X — Y
is a linear operator, then (R&(6))” = &(R6). In particular, RO is
continuous if and only if RS(6) = {0}.

The next lemma states that a certain descending sequence of sep-
arating space which obtained from 6 via a countable family of con-
tinuous linear operators is eventually constant. This lemma is proved
in [3], [4] and [10].

STABILITY LEMMA. Let 0 : Xo — Y be a linear operator between
the Banach spaces Xy and Y with separating space &(0), and let
(X;:i=1,2,...) be asequence of Banach spaces. If each T; : X; —
X,;_1 is continuous linear operator for ¢ = 1,2,..., then there is an
ng € N for which

6(9T1T2 oo Tn) = 6(9T1T2 oo Tno) for all n 2 no-.

The following lemma, known as localization of the singularities, is
adopted from [5].

LEMMA 7. Let X and Y be Banach spaces. Suppose that Ex :

F(C) — S(X) is an order preserving map such that X = Ex(U) +
Ex (V) whenever {U,V} is an open cover of C. And suppose that
& : F(C) — S(Y) isastable map. If § : X — Y is a linear operator

for which
S0|Ex(F)) C Ey(F) forevery F € F(C),

then there is a finite set A C C for which &(0) C &y (A).

This lemma tells us that under appropriate assumptions on a lin-

ear operator which have a large lattice of closed invariant subspaces
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the separating space will be contained eventually in a small closed

invariant subspace.

We need the next theorem, known as Mittag-Leffler Theorem of
Bourbaki, which is found in [10].

MITTAG-LEFFLER THEOREM. Let (X, : n =0,1,2,...) be a se-
quence of complete metric spaces, and for n = 1,2,..., let f, :
X, — X,,—1 be a continuous map with f,(X,) dense in X,,_1. Let
gn = fio-+-0 fn. Then (_,9n(Xy) is dense in X.

3. Continuity of linear operator intertwining with decom-

posable operators and pure hyponormal operators

Let H be a Hilbert space over the complex plane C with the inner
product (-,-) and let £(H) denote the Banach algebra of bounded
linear operators on H. An operator T' € L(H) is said to be hyponormal
if its self commutator [, T] = T*T — TT* is positive, that is

or equivalently,

1Tl < 7€

for every £ € H.

It is well known that every hyponormal operator T" has the single
valued extension property and for any closed set F' in C, the analytic
spectral subspace Hr (F') is closed [7].

DEFINITION 8. A hyponormal operator T" on a Hilbert space H is
said to be pure hyponormal if there is no nontrivial normal operator
which is a direct orthogonal summand of T

The following proposition is found in [8].
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PROPOSITION 9. Let T be a pure hyponormal operator on a Hilbert
space H. Then
Hp(F) = ((T = MH,
A\¢F
for any closed subset F C C.

The following proposition is found in [2].

PropPoOSITION 10. Let T be a pure hyponormal operator on a
Hilbert space H. Then T' has no eigenvalues.

For a pure hyponormal operator, the following proposition allows
us to combine the analytic tools associated with the space Hr(F)

with the algebraic tools associated with the space Er(F).

PrROPOSITION 11. Let T be a pure hyponormal operator on a
Hilbert space H. Then for any closed set F' of C, Hp(F') = Erp(F).

Proof. Let I be a closed subset of C. From the definition of the
algebraic spectral subspace, it is clear that
Er(F)C () (T—-\"H.
A¢F,neN
By Proposition 9, we have
Er(F)C () (T-N"HC ()(T-NH = Hy(F).
A¢F,neN AEF
Therefore we have,
Hp(F) = Er(F)

for any closed subset F' of C. O

By the above proposition, pure hyponormal operators do not have
non-trivial divisible subspaces.

Let T and S be bounded linear operators on Banach spaces X
and Y, respectively. A linear operator 6 : X — Y is said to be an

intertwining linear operator with T and S if S0 = 0T.



46 S. PARK, H. HAN AND S. PARK

PROPOSITION 12. Assume that T € L(X) has the single-valued
extension property and that a pure hyponormal operator S € L(H)
Then every linear transformation 6 : X — H with the property S0 =

0T necessarily satisfies the following:

0Xr(F) C Hg(F) for all closed subsets F' of C.

Proof. Since Xp(F) C Ep(F),
O0Xr(F) COEp(F)=0(T —N)Ep(F)=(S—-\N0Ep(F)

for every A € C\ F. This shows that 0FEp(F) C Eg(F') and since
Eg(F) = Hg(F), by Proposition 11, the proof is complete. O

THEOREM 13. Suppose that T € L£(X) is decomposable and that
S € L(H) is pure hyponormal. Then every linear operator : X — H

for which 6T = S0 is necessarily continuous.

Proof. Consider an arbitrary linear operator 6 : X — H satisfying
S0 = 0T. To prove the continuity of 6, it suffices to construct a non-
trivial polynomial p such that p(S)&(0) = {0}. Indeed if we do so,
since all factors S — A of p(S) is injective by Proposition 10, we have
S(0) = {0}.

From Proposition 12, we infer that 0 X (F) C Hg(F) for all closed
subsets F' of C. Since Xp(F') is the spectral capacity and Hg(F')
is stable, by Lemma 7, there is a finite set A of C such that &(0) C
Hg(A). An application of the Stability Lemma to the sequence T'— ,
where A\ € A, yields a polynomial p for which

S(Op(T)) = SOp(T)(T — X)) for every A € A.
Since 0 intertwines T and S, this means that by Lemma 6

(S =Mp(S)6(0))” = (p(S)S(0))~ for every X € A.
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Applying Mittag-Leffler Theorem, there exists a dense subspace W C

(p

(S)6&(0))~ for which (S —A\)W =W for every A € A. This means

that W C Eg(C\A) by the definition of algebraic spectral subspaces.
Since W C 6(0) C Eg(A), we obtain that

W C Es(A)N Es(C\ A) = Es(0).

Since S is pure hyponormal, S has no non trivial divisible subspace.
Hence Eg()) = {0}. Therefore we have, W = {0}. Consequently,
p(S)&(0) = {0}. Hence 6 is continuous. So the proof is complete. [
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