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Abstract. In this paper, we show that for a pure hyponormal op-

erator the analytic spectral subspace and the algebraic spectral sub-

space are coincide. Using this result, we have the following result:

Let T be a decomposable operator on a Banach space X and let S be
a pure hyponormal operator on a Hilbert space H. Then every linear

operator θ : X → H with Sθ = θT is automatically continuous.

1. Introduction

Let X and Y be Banach spaces and consider a linear operator

θ : X → Y . The basic automatic continuity problem is to derive

the continuity of θ from some prescribed algebraic conditions. For

example, if θ : X → Y is a linear operator intertwining with T ∈

L(X) and S ∈ L(Y ), that is θT = Sθ, one may look for algebraic

conditions on T and S which force θ to be continuous.

The study of continuity of a linear operator θ intertwining with

T and S was initiated by Johnson and Sinclair [3]. In [3] necessary

conditions on T and S for the continuity of θ were obtained for the

operator S with countable spectrum.
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In 1973 Vrbová presented an automatic continuity result concern-

ing an intertwining operator with operators having suitable spectral

decomposition properties [11].

In 1986 Laursen and Neumann introduced super-decomposable op-

erators in [6] in order to consider necessary conditions for automatic

continuity of intertwining operators: this class of operators contains

most of interesting examples of decomposable operators. Since [6],

the study of automatic continuity of intertwining linear operators has

been closely related to the classification of decomposable operators.

In this paper, we show that for a pure hyponormal operator the

analytic spectral subspace and the algebraic spectral subspace are co-

incide. Using this result, we have the following result: Let T be a

decomposable operator on a Banach space X and let S be a pure hy-

ponormal operator on a Hilbert space H. Then every linear operator

θ : X → H with Sθ = θT is automatically continuous.

2. Preliminaries

Throughout this paper we shall use the standard notions and some

basic results on the theory of decomposable operators and automatic

continuity theory. Let X be a Banach space over the complex plane

C. And let L(X) denote the Banach algebra of all bounded linear

operators on a Banach space X. Given an operator T ∈ L(X), Lat(T )

denotes the collection of all closed T -invariant linear subspaces of X,

and for an Y ∈ Lat(T ) T |Y denotes the restriction of T on Y .

Definition 1. Let T : X → X be a linear operator on a Banach

space X. Let F be a subset of the complex plane C. Consider the

class of all linear subspaces Y of X which satisfy (T −λ)Y = Y for

all λ /∈ F and let ET (F ) denote the span of all such subspaces Y

of X. ET (F ) is called an algebraic spectral subspace of T .

In the next Remark, we collect a number of results on algebraic
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spectral subspaces. These results are found in [7].

Remark 2. (1) It is clear that (T − λ)ET (F ) = ET (F ) for all

λ /∈ F as well so that it is the largest linear subspace with this

property.

(2) By the definition of the algebraic spectral subspace, it is clear

that

ET (F1) ⊆ ET (F2) for F1 ⊆ F2.

(3) Let A be a linear operator on a vector space X with AT = TA.

For a given subset F of C and λ /∈ F , we obtain

(T − λ)AET (F ) = A(T − λ)ET (F ) = AET (F ).

By the maximality of ET (F ) we have

AET (F ) ⊆ ET (F ).

That is, the space ET (F ) is a hyper-invariant subspace of T .

(4) It is well known that if {Fα} is a family of subsets of C, then

ET (
⋂

α

Fα) =
⋂

α

ET (Fα).

A linear subspace Z of X is called a T -divisible subspace if

(T − λ)Z = Z for all λ ∈ C.

Hence ET (∅) is precisely the largest T -divisible subspace. There is

an operator which has non-trivial divisible subspaces. Indeed, the

Volterra operator has a non-trivial divisible subspace.

Proposition 3. Let T ∈ L(X). If Z is a closed T -divisible

subspace of X, then Z = {0}.

Proof. Let λ ∈ ∂σ(T |Z), where ∂σ(T |Z) denotes the boundary of

the spectrum of T restricted to Z. By the general theory of Banach
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algebras, there exists a sequence 〈Tn〉 of linear operators in Z with

‖Tn‖ = 1 for all n ∈ N and Tn(T −λ) → 0. Since (T −λ)Z = Z, by

the open mapping theorem, kB ⊆ (T −λ)B for some k > 0 where B

is the unit ball in Z. For sufficiently large n with ‖Tn(T − λ)‖ < k
2
,

we have

kTnB ⊆ Tn(T − λ)B ⊆
k

2
B.

Then TnB ⊆ 1

2
B, which contradicts the assumption that ‖Tn‖ = 1.

�

For a given T ∈ L(X), let σ(T ) and ρ(T ) denote the spectrum and

the resolvent set of T , respectively. The local resolvent set ρT (x) of T

at the point x ∈ X is defined as the union of all open subsets U of C

for which there is an analytic function f : U → X which satisfies

(T − λ)f(λ) = x for all λ ∈ U.

The local spectrum σT (x) of T at x is then defined as

σT (x) = C \ ρT (x).

Clearly, the local resolvent set ρT (x) is open, and the local spectrum

σT (x) is closed. For each x ∈ X, the function f(λ) : ρ(T ) → X

defined by f(λ) = (T − λ)−1x is analytic on ρ(T ) and satisfies

(T − λ)f(λ) = x for all λ ∈ ρ(T ).

Hence the resolvent set ρ(T ) is always subset of ρT (x) and hence σT (x)

is always subset of σ(T ). The analytic solutions occurring in the defi-

nition of the local resolvent set may be thought of as local extensions

of the function (T − λ)−1x. There is no uniqueness implied. If for

each x ∈ X there is the unique analytic extension of (T −λ)−1x, then

T is said to have the single-valued extension property, abbreviated
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SVEP. Hence if T has the SVEP, then there is the maximal analytic

extention of (T − λ)−1x from ρ(T ) to ρT (x).

Given an arbitrary operator T ∈ L(X) and for any set F ⊆ C, we

define the analytic spectral subspace of T by

XT (F ) = {x ∈ X |σT (x) ⊆ F}.

In the next Remark, we collect a number of results on analytic

spectral subspaces. These results are found in [7].

Remark 4 (1) By the definition of the analytic spectral subspace,

it is clear that

XT (F1) ⊆ XT (F2) for F1 ⊆ F2.

(2) It is well known that the space XT (F ) is a hyper-invariant

subspace of T .

(3) It is easy to see that

XT (F ) = XT (F ∩ σ(T )).

(4) For all λ ∈ C \ F ,

(T − λ)XT (F ) = XT (F )

This implies that

XT (F ) ⊆ ET (F ) for all F ⊆ C.

(5) If {Fα} is a family of subsets of C, then

XT (
⋂

α

Fα) =
⋂

α

XT (Fα).

(6) It is well known that T has the SVEP if and only if XT (∅) = {0}.
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An operator T ∈ L(X) is called decomposable if, for every open

covering {U, V } of the complex plane C, there exist Y,Z ∈ Lat(T )

such that

σ(T |Y ) ⊆ U, σ(T |Z) ⊆ V and Y + Z = X.

Decomposable operators are rich. For example, normal operators,

spectral operators in the sense of Dunford, operators with totally dis-

connected spectrums and hence compact operators are decomposable.

Let F(C) denote the family of all closed subsets of C and let

S(X) denote the family of all closed linear subspaces of X.

Definition 5. (1) A map E(·) : F(C) → S(X) is called stable if

it satisfies the following two conditions:

(i) E(∅) = {0}, E(C) = X.

(ii) E(
⋂

∞

n=1
Fn) =

⋂
∞

n=1
E(Fn) for any sequence {Fn} in F(C).

(2) A map E(·) : F(C) → S(X) is called a spectral capacity if E(·)

is stable and satisfies the following condition:

(iii) X =
∑

j E(Gj) for every finite open cover {Gj} of C.

We say that E(·) is order preserving if it preserves the inclusion

order. Clearly a stable map is order preserving. It is well known that

T is decomposable if and only if there exists a spectral capacity E(·)

such that E(F ) ∈ Lat(T ) and σ(T |E(F )) ⊆ F for each closed set

F ⊆ C. In this case the spectral capacity of a closed subset F of C is

uniquely determined and it is the analytic spectral subspace XT (F ).

Let θ be a linear operator from a Banach space X into a Banach

space Y . The space

S(θ) = {y ∈ Y : there is a sequence xn → 0 in X and θxn → y}

is called the separating space of θ. It is easy to see that S(θ) is a closed

linear subspace of Y . By the closed graph theorem, θ is continuous if

and only if S(θ) = {0}. The following lemma is found in [10].
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Lemma 6. Let X and Y be Banach spaces. If R is a continuous

linear operator from Y to a Banach space Z, and if θ : X → Y

is a linear operator, then (RS(θ))− = S(Rθ). In particular, Rθ is

continuous if and only if RS(θ) = {0}.

The next lemma states that a certain descending sequence of sep-

arating space which obtained from θ via a countable family of con-

tinuous linear operators is eventually constant. This lemma is proved

in [3], [4] and [10].

Stability Lemma. Let θ : X0 → Y be a linear operator between

the Banach spaces X0 and Y with separating space S(θ), and let

〈Xi : i = 1, 2, . . . 〉 be a sequence of Banach spaces. If each Ti : Xi →

Xi−1 is continuous linear operator for i = 1, 2, . . . , then there is an

n0 ∈ N for which

S(θT1T2 . . . Tn) = S(θT1T2 . . . Tn0
) for all n ≥ n0.

The following lemma, known as localization of the singularities, is

adopted from [5].

Lemma 7. Let X and Y be Banach spaces. Suppose that EX :

F(C) → S(X) is an order preserving map such that X = EX(U ) +

EX(V ) whenever {U, V } is an open cover of C. And suppose that

EY : F(C) → S(Y ) is a stable map. If θ : X → Y is a linear operator

for which

S(θ|EX (F )) ⊆ EY (F ) for every F ∈ F(C),

then there is a finite set Λ ⊆ C for which S(θ) ⊆ EY (Λ).

This lemma tells us that under appropriate assumptions on a lin-

ear operator which have a large lattice of closed invariant subspaces
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the separating space will be contained eventually in a small closed

invariant subspace.

We need the next theorem, known as Mittag-Leffler Theorem of

Bourbaki, which is found in [10].

Mittag-Leffler Theorem. Let 〈Xn : n = 0, 1, 2, . . . 〉 be a se-

quence of complete metric spaces, and for n = 1, 2, . . . , let fn :

Xn → Xn−1 be a continuous map with fn(Xn) dense in Xn−1. Let

gn = f1 ◦ · · · ◦ fn. Then
⋂

∞

n=1
gn(Xn) is dense in X0.

3. Continuity of linear operator intertwining with decom-

posable operators and pure hyponormal operators

Let H be a Hilbert space over the complex plane C with the inner

product (·, ·) and let L(H) denote the Banach algebra of bounded

linear operators on H. An operator T ∈ L(H) is said to be hyponormal

if its self commutator [T ∗, T ] = T ∗T − TT ∗ is positive, that is

((T ∗T − TT ∗)ξ, ξ) ≥ 0,

or equivalently,

‖T ∗ξ‖ ≤ ‖Tξ‖

for every ξ ∈ H.

It is well known that every hyponormal operator T has the single

valued extension property and for any closed set F in C, the analytic

spectral subspace HT (F ) is closed [7].

Definition 8. A hyponormal operator T on a Hilbert space H is

said to be pure hyponormal if there is no nontrivial normal operator

which is a direct orthogonal summand of T .

The following proposition is found in [8].
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Proposition 9. Let T be a pure hyponormal operator on a Hilbert

space H. Then

HT (F ) =
⋂

λ/∈F

(T − λ)H,

for any closed subset F ⊆ C.

The following proposition is found in [2].

Proposition 10. Let T be a pure hyponormal operator on a

Hilbert space H. Then T has no eigenvalues.

For a pure hyponormal operator, the following proposition allows

us to combine the analytic tools associated with the space HT (F )

with the algebraic tools associated with the space ET (F ).

Proposition 11. Let T be a pure hyponormal operator on a

Hilbert space H. Then for any closed set F of C, HT (F ) = ET (F ).

Proof. Let F be a closed subset of C. From the definition of the

algebraic spectral subspace, it is clear that

ET (F ) ⊆
⋂

λ/∈F,n∈N

(T − λ)
n
H.

By Proposition 9, we have

ET (F ) ⊆
⋂

λ/∈F,n∈N

(T − λ)
n
H ⊆

⋂

λ/∈F

(T − λ)H = HT (F ).

Therefore we have,

HT (F ) = ET (F )

for any closed subset F of C. �

By the above proposition, pure hyponormal operators do not have

non-trivial divisible subspaces.

Let T and S be bounded linear operators on Banach spaces X

and Y , respectively. A linear operator θ : X → Y is said to be an

intertwining linear operator with T and S if Sθ = θT .
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Proposition 12. Assume that T ∈ L(X) has the single-valued

extension property and that a pure hyponormal operator S ∈ L(H)

Then every linear transformation θ : X → H with the property Sθ =

θT necessarily satisfies the following:

θXT (F ) ⊆ HS(F ) for all closed subsets F of C.

Proof. Since XT (F ) ⊆ ET (F ),

θXT (F ) ⊆ θET (F ) = θ(T − λ)ET (F ) = (S − λ)θET (F )

for every λ ∈ C \ F . This shows that θET (F ) ⊆ ES(F ) and since

ES(F ) = HS(F ), by Proposition 11, the proof is complete. �

Theorem 13. Suppose that T ∈ L(X) is decomposable and that

S ∈ L(H) is pure hyponormal. Then every linear operator θ : X → H

for which θT = Sθ is necessarily continuous.

Proof. Consider an arbitrary linear operator θ : X → H satisfying

Sθ = θT . To prove the continuity of θ, it suffices to construct a non-

trivial polynomial p such that p(S)S(θ) = {0}. Indeed if we do so,

since all factors S − λ of p(S) is injective by Proposition 10, we have

S(θ) = {0}.

From Proposition 12, we infer that θXT (F ) ⊆ HS(F ) for all closed

subsets F of C. Since XT (F ) is the spectral capacity and HS(F )

is stable, by Lemma 7, there is a finite set Λ of C such that S(θ) ⊆

HS(Λ). An application of the Stability Lemma to the sequence T −λ,

where λ ∈ Λ, yields a polynomial p for which

S(θp(T )) = S(θp(T )(T − λ)) for every λ ∈ Λ.

Since θ intertwines T and S, this means that by Lemma 6

((S − λ)p(S)S(θ))− = (p(S)S(θ))− for every λ ∈ Λ.
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Applying Mittag-Leffler Theorem, there exists a dense subspace W ⊆

(p(S)S(θ))− for which (S −λ)W = W for every λ ∈ Λ. This means

that W ⊆ ES(C\Λ) by the definition of algebraic spectral subspaces.

Since W ⊆ S(θ) ⊆ ES(Λ), we obtain that

W ⊆ ES(Λ) ∩ ES(C \ Λ) = ES(∅).

Since S is pure hyponormal, S has no non trivial divisible subspace.

Hence ES(∅) = {0}. Therefore we have, W = {0}. Consequently,

p(S)S(θ) = {0}. Hence θ is continuous. So the proof is complete. �
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