CONTINUITY OF LINEAR OPERATOR INTERTWINING WITH DECOMPOSABLE OPERATORS AND PURE HYPONORMAL OPERATORS

SUNG-WOOK PARK*, HYUK HAN**, AND SE WON PARK***

ABSTRACT. In this paper, we show that for a pure hyponormal operator the analytic spectral subspace and the algebraic spectral subspace are coincide. Using this result, we have the following result: Let T be a decomposable operator on a Banach space X and let S be a pure hyponormal operator on a Hilbert space H. Then every linear operator $\theta: X \to H$ with $S\theta = \theta T$ is automatically continuous.

1. Introduction

Let X and Y be Banach spaces and consider a linear operator $\theta: X \to Y$. The basic automatic continuity problem is to derive the continuity of θ from some prescribed algebraic conditions. For example, if $\theta: X \to Y$ is a linear operator intertwining with $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$, that is $\theta T = S\theta$, one may look for algebraic conditions on T and S which force θ to be continuous.

The study of continuity of a linear operator θ intertwining with T and S was initiated by Johnson and Sinclair [3]. In [3] necessary conditions on T and S for the continuity of θ were obtained for the operator S with countable spectrum.

^{*}Supported by Research Fund, Kumoh National University of Technology Received by the editors on May 6, 2003.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 46H40, 47B40.

Key words and phrases: automatic continuity, local spectral theory, hyponormal operator.

In 1973 Vrbová presented an automatic continuity result concerning an intertwining operator with operators having suitable spectral decomposition properties [11].

In 1986 Laursen and Neumann introduced super-decomposable operators in [6] in order to consider necessary conditions for automatic continuity of intertwining operators: this class of operators contains most of interesting examples of decomposable operators. Since [6], the study of automatic continuity of intertwining linear operators has been closely related to the classification of decomposable operators.

In this paper, we show that for a pure hyponormal operator the analytic spectral subspace and the algebraic spectral subspace are coincide. Using this result, we have the following result: Let T be a decomposable operator on a Banach space X and let S be a pure hyponormal operator on a Hilbert space H. Then every linear operator $\theta: X \to H$ with $S\theta = \theta T$ is automatically continuous.

2. Preliminaries

Throughout this paper we shall use the standard notions and some basic results on the theory of decomposable operators and automatic continuity theory. Let X be a Banach space over the complex plane \mathbb{C} . And let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on a Banach space X. Given an operator $T \in \mathcal{L}(X)$, Lat(T) denotes the collection of all closed T-invariant linear subspaces of X, and for an $Y \in \mathrm{Lat}(T)$ T|Y denotes the restriction of T on Y.

DEFINITION 1. Let $T: X \to X$ be a linear operator on a Banach space X. Let F be a subset of the complex plane \mathbb{C} . Consider the class of all linear subspaces Y of X which satisfy $(T - \lambda)Y = Y$ for all $\lambda \notin F$ and let $E_T(F)$ denote the span of all such subspaces Y of X. $E_T(F)$ is called an algebraic spectral subspace of T.

In the next Remark, we collect a number of results on algebraic

spectral subspaces. These results are found in [7].

REMARK 2. (1) It is clear that $(T - \lambda)E_T(F) = E_T(F)$ for all $\lambda \notin F$ as well so that it is the largest linear subspace with this property.

(2) By the definition of the algebraic spectral subspace, it is clear that

$$E_T(F_1) \subseteq E_T(F_2)$$
 for $F_1 \subseteq F_2$.

(3) Let A be a linear operator on a vector space X with AT = TA. For a given subset F of \mathbb{C} and $\lambda \notin F$, we obtain

$$(T - \lambda)AE_T(F) = A(T - \lambda)E_T(F) = AE_T(F).$$

By the maximality of $E_T(F)$ we have

$$AE_T(F) \subseteq E_T(F)$$
.

That is, the space $E_T(F)$ is a hyper-invariant subspace of T.

(4) It is well known that if $\{F_{\alpha}\}$ is a family of subsets of \mathbb{C} , then

$$E_T(\bigcap_{\alpha} F_{\alpha}) = \bigcap_{\alpha} E_T(F_{\alpha}).$$

A linear subspace Z of X is called a T-divisible subspace if

$$(T - \lambda)Z = Z$$
 for all $\lambda \in \mathbb{C}$.

Hence $E_T(\emptyset)$ is precisely the largest T-divisible subspace. There is an operator which has non-trivial divisible subspaces. Indeed, the Volterra operator has a non-trivial divisible subspace.

PROPOSITION 3. Let $T \in \mathcal{L}(X)$. If Z is a closed T-divisible subspace of X, then $Z = \{0\}$.

Proof. Let $\lambda \in \partial \sigma(T|Z)$, where $\partial \sigma(T|Z)$ denotes the boundary of the spectrum of T restricted to Z. By the general theory of Banach

algebras, there exists a sequence $\langle T_n \rangle$ of linear operators in Z with $||T_n|| = 1$ for all $n \in \mathbb{N}$ and $T_n(T - \lambda) \to 0$. Since $(T - \lambda)Z = Z$, by the open mapping theorem, $kB \subseteq (T - \lambda)B$ for some k > 0 where B is the unit ball in Z. For sufficiently large n with $||T_n(T - \lambda)|| < \frac{k}{2}$, we have

$$kT_nB \subseteq T_n(T-\lambda)B \subseteq \frac{k}{2}B.$$

Then $T_nB \subseteq \frac{1}{2}B$, which contradicts the assumption that $||T_n|| = 1$.

For a given $T \in \mathcal{L}(X)$, let $\sigma(T)$ and $\rho(T)$ denote the spectrum and the resolvent set of T, respectively. The *local resolvent set* $\rho_T(x)$ of Tat the point $x \in X$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \to X$ which satisfies

$$(T - \lambda)f(\lambda) = x$$
 for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at x is then defined as

$$\sigma_T(x) = \mathbb{C} \setminus \rho_T(x).$$

Clearly, the local resolvent set $\rho_T(x)$ is open, and the local spectrum $\sigma_T(x)$ is closed. For each $x \in X$, the function $f(\lambda) : \rho(T) \to X$ defined by $f(\lambda) = (T - \lambda)^{-1}x$ is analytic on $\rho(T)$ and satisfies

$$(T - \lambda)f(\lambda) = x$$
 for all $\lambda \in \rho(T)$.

Hence the resolvent set $\rho(T)$ is always subset of $\rho_T(x)$ and hence $\sigma_T(x)$ is always subset of $\sigma(T)$. The analytic solutions occurring in the definition of the local resolvent set may be thought of as local extensions of the function $(T - \lambda)^{-1}x$. There is no uniqueness implied. If for each $x \in X$ there is the unique analytic extension of $(T - \lambda)^{-1}x$, then T is said to have the *single-valued extension property*, abbreviated

SVEP. Hence if T has the SVEP, then there is the maximal analytic extention of $(T - \lambda)^{-1}x$ from $\rho(T)$ to $\rho_T(x)$.

Given an arbitrary operator $T \in L(X)$ and for any set $F \subseteq \mathbb{C}$, we define the analytic spectral subspace of T by

$$X_T(F) = \{x \in X \mid \sigma_T(x) \subseteq F\}.$$

In the next Remark, we collect a number of results on analytic spectral subspaces. These results are found in [7].

REMARK 4 (1) By the definition of the analytic spectral subspace, it is clear that

$$X_T(F_1) \subseteq X_T(F_2)$$
 for $F_1 \subseteq F_2$.

- (2) It is well known that the space $X_T(F)$ is a hyper-invariant subspace of T.
 - (3) It is easy to see that

$$X_T(F) = X_T(F \cap \sigma(T)).$$

(4) For all $\lambda \in \mathbb{C} \setminus F$,

$$(T - \lambda)X_T(F) = X_T(F)$$

This implies that

$$X_T(F) \subseteq E_T(F)$$
 for all $F \subseteq \mathbb{C}$.

(5) If $\{F_{\alpha}\}$ is a family of subsets of \mathbb{C} , then

$$X_T(\bigcap_{\alpha} F_{\alpha}) = \bigcap_{\alpha} X_T(F_{\alpha}).$$

(6) It is well known that T has the SVEP if and only if $X_T(\emptyset) = \{0\}$.

An operator $T \in \mathcal{L}(X)$ is called *decomposable* if, for every open covering $\{U, V\}$ of the complex plane \mathbb{C} , there exist $Y, Z \in \operatorname{Lat}(T)$ such that

$$\sigma(T|Y) \subseteq U$$
, $\sigma(T|Z) \subseteq V$ and $Y + Z = X$.

Decomposable operators are rich. For example, normal operators, spectral operators in the sense of Dunford, operators with totally disconnected spectrums and hence compact operators are decomposable.

Let $\mathcal{F}(\mathbb{C})$ denote the family of all closed subsets of \mathbb{C} and let $\mathcal{S}(X)$ denote the family of all closed linear subspaces of X.

DEFINITION 5. (1) A map $\mathcal{E}(\cdot): \mathcal{F}(\mathbb{C}) \to \mathcal{S}(X)$ is called *stable* if it satisfies the following two conditions:

- (i) $\mathcal{E}(\emptyset) = \{0\}, \quad \mathcal{E}(\mathbb{C}) = X.$
- (ii) $\mathcal{E}(\bigcap_{n=1}^{\infty} F_n) = \bigcap_{n=1}^{\infty} \mathcal{E}(F_n)$ for any sequence $\{F_n\}$ in $\mathcal{F}(\mathbb{C})$.
- (2) A map $\mathcal{E}(\cdot): \mathcal{F}(\mathbb{C}) \to \mathcal{S}(X)$ is called a *spectral capacity* if $\mathcal{E}(\cdot)$ is stable and satisfies the following condition:
- (iii) $X = \sum_{j} \mathcal{E}(\overline{G}_{j})$ for every finite open cover $\{G_{j}\}$ of \mathbb{C} .

We say that $\mathcal{E}(\cdot)$ is order preserving if it preserves the inclusion order. Clearly a stable map is order preserving. It is well known that T is decomposable if and only if there exists a spectral capacity $\mathcal{E}(\cdot)$ such that $\mathcal{E}(F) \in \operatorname{Lat}(T)$ and $\sigma(T|\mathcal{E}(F)) \subseteq F$ for each closed set $F \subseteq \mathbb{C}$. In this case the spectral capacity of a closed subset F of \mathbb{C} is uniquely determined and it is the analytic spectral subspace $X_T(F)$.

Let θ be a linear operator from a Banach space X into a Banach space Y. The space

$$\mathfrak{S}(\theta) = \{ y \in Y : \text{ there is a sequence } x_n \to 0 \text{ in } X \text{ and } \theta x_n \to y \}$$

is called the *separating space* of θ . It is easy to see that $\mathfrak{S}(\theta)$ is a closed linear subspace of Y. By the closed graph theorem, θ is continuous if and only if $\mathfrak{S}(\theta) = \{0\}$. The following lemma is found in [10].

LEMMA 6. Let X and Y be Banach spaces. If R is a continuous linear operator from Y to a Banach space Z, and if $\theta: X \to Y$ is a linear operator, then $(R\mathfrak{S}(\theta))^- = \mathfrak{S}(R\theta)$. In particular, $R\theta$ is continuous if and only if $R\mathfrak{S}(\theta) = \{0\}$.

The next lemma states that a certain descending sequence of separating space which obtained from θ via a countable family of continuous linear operators is eventually constant. This lemma is proved in [3], [4] and [10].

STABILITY LEMMA. Let $\theta: X_0 \to Y$ be a linear operator between the Banach spaces X_0 and Y with separating space $\mathfrak{S}(\theta)$, and let $\langle X_i: i=1,2,\ldots \rangle$ be a sequence of Banach spaces. If each $T_i: X_i \to X_{i-1}$ is continuous linear operator for $i=1,2,\ldots$, then there is an $n_0 \in \mathbb{N}$ for which

$$\mathfrak{S}(\theta T_1 T_2 \dots T_n) = \mathfrak{S}(\theta T_1 T_2 \dots T_{n_0})$$
 for all $n \ge n_0$.

The following lemma, known as *localization of the singularities*, is adopted from [5].

LEMMA 7. Let X and Y be Banach spaces. Suppose that \mathcal{E}_X : $\mathcal{F}(\mathbb{C}) \to \mathcal{S}(X)$ is an order preserving map such that $X = \mathcal{E}_X(\overline{U}) + \mathcal{E}_X(\overline{V})$ whenever $\{U,V\}$ is an open cover of \mathbb{C} . And suppose that $\mathcal{E}_Y: \mathcal{F}(\mathbb{C}) \to \mathcal{S}(Y)$ is a stable map. If $\theta: X \to Y$ is a linear operator for which

$$\mathfrak{S}(\theta|\mathcal{E}_X(F)) \subseteq \mathcal{E}_Y(F)$$
 for every $F \in \mathcal{F}(\mathbb{C})$,

then there is a finite set $\Lambda \subseteq \mathbb{C}$ for which $\mathfrak{S}(\theta) \subseteq \mathcal{E}_Y(\Lambda)$.

This lemma tells us that under appropriate assumptions on a linear operator which have a large lattice of closed invariant subspaces the separating space will be contained eventually in a small closed invariant subspace.

We need the next theorem, known as Mittag-Leffler Theorem of Bourbaki, which is found in [10].

MITTAG-LEFFLER THEOREM. Let $\langle X_n : n = 0, 1, 2, ... \rangle$ be a sequence of complete metric spaces, and for $n = 1, 2, ..., let f_n : X_n \to X_{n-1}$ be a continuous map with $f_n(X_n)$ dense in X_{n-1} . Let $g_n = f_1 \circ \cdots \circ f_n$. Then $\bigcap_{n=1}^{\infty} g_n(X_n)$ is dense in X_0 .

3. Continuity of linear operator intertwining with decomposable operators and pure hyponormal operators

Let H be a Hilbert space over the complex plane \mathbb{C} with the inner product (\cdot, \cdot) and let $\mathcal{L}(H)$ denote the Banach algebra of bounded linear operators on H. An operator $T \in \mathcal{L}(H)$ is said to be hyponormal if its self commutator $[T^*, T] = T^*T - TT^*$ is positive, that is

$$((T^*T - TT^*)\xi, \xi) \ge 0,$$

or equivalently,

$$||T^*\xi|| \le ||T\xi||$$

for every $\xi \in H$.

It is well known that every hyponormal operator T has the single valued extension property and for any closed set F in \mathbb{C} , the analytic spectral subspace $H_T(F)$ is closed [7].

DEFINITION 8. A hyponormal operator T on a Hilbert space H is said to be *pure hyponormal* if there is no nontrivial normal operator which is a direct orthogonal summand of T.

The following proposition is found in [8].

PROPOSITION 9. Let T be a pure hyponormal operator on a Hilbert space H. Then

$$H_T(F) = \bigcap_{\lambda \notin F} (T - \lambda)H,$$

for any closed subset $F \subseteq \mathbb{C}$.

The following proposition is found in [2].

PROPOSITION 10. Let T be a pure hyponormal operator on a Hilbert space H. Then T has no eigenvalues.

For a pure hyponormal operator, the following proposition allows us to combine the analytic tools associated with the space $H_T(F)$ with the algebraic tools associated with the space $E_T(F)$.

PROPOSITION 11. Let T be a pure hyponormal operator on a Hilbert space H. Then for any closed set F of \mathbb{C} , $H_T(F) = E_T(F)$.

Proof. Let F be a closed subset of \mathbb{C} . From the definition of the algebraic spectral subspace, it is clear that

$$E_T(F) \subseteq \bigcap_{\lambda \notin F, n \in \mathbb{N}} (T - \lambda)^n H.$$

By Proposition 9, we have

$$E_T(F) \subseteq \bigcap_{\lambda \notin F, n \in \mathbb{N}} (T - \lambda)^n H \subseteq \bigcap_{\lambda \notin F} (T - \lambda) H = H_T(F).$$

Therefore we have,

$$H_T(F) = E_T(F)$$

for any closed subset F of \mathbb{C} .

By the above proposition, pure hyponormal operators do not have non-trivial divisible subspaces.

Let T and S be bounded linear operators on Banach spaces X and Y, respectively. A linear operator $\theta: X \to Y$ is said to be an intertwining linear operator with T and S if $S\theta = \theta T$.

PROPOSITION 12. Assume that $T \in \mathcal{L}(X)$ has the single-valued extension property and that a pure hyponormal operator $S \in \mathcal{L}(H)$ Then every linear transformation $\theta : X \to H$ with the property $S\theta = \theta T$ necessarily satisfies the following:

$$\theta X_T(F) \subseteq H_S(F)$$
 for all closed subsets F of \mathbb{C} .

Proof. Since $X_T(F) \subseteq E_T(F)$,

$$\theta X_T(F) \subseteq \theta E_T(F) = \theta (T - \lambda) E_T(F) = (S - \lambda) \theta E_T(F)$$

for every $\lambda \in \mathbb{C} \setminus F$. This shows that $\theta E_T(F) \subseteq E_S(F)$ and since $E_S(F) = H_S(F)$, by Proposition 11, the proof is complete.

THEOREM 13. Suppose that $T \in \mathcal{L}(X)$ is decomposable and that $S \in \mathcal{L}(H)$ is pure hyponormal. Then every linear operator $\theta : X \to H$ for which $\theta T = S\theta$ is necessarily continuous.

Proof. Consider an arbitrary linear operator $\theta: X \to H$ satisfying $S\theta = \theta T$. To prove the continuity of θ , it suffices to construct a non-trivial polynomial p such that $p(S)\mathfrak{S}(\theta) = \{0\}$. Indeed if we do so, since all factors $S - \lambda$ of p(S) is injective by Proposition 10, we have $\mathfrak{S}(\theta) = \{0\}$.

From Proposition 12, we infer that $\theta X_T(F) \subseteq H_S(F)$ for all closed subsets F of \mathbb{C} . Since $X_T(F)$ is the spectral capacity and $H_S(F)$ is stable, by Lemma 7, there is a finite set Λ of \mathbb{C} such that $\mathfrak{S}(\theta) \subseteq$ $H_S(\Lambda)$. An application of the Stability Lemma to the sequence $T - \lambda$, where $\lambda \in \Lambda$, yields a polynomial p for which

$$\mathfrak{S}(\theta p(T)) = \mathfrak{S}(\theta p(T)(T - \lambda))$$
 for every $\lambda \in \Lambda$.

Since θ intertwines T and S, this means that by Lemma 6

$$((S - \lambda)p(S)\mathfrak{S}(\theta))^- = (p(S)\mathfrak{S}(\theta))^-$$
 for every $\lambda \in \Lambda$.

Applying Mittag-Leffler Theorem, there exists a dense subspace $W \subseteq (p(S)\mathfrak{S}(\theta))^-$ for which $(S-\lambda)W=W$ for every $\lambda \in \Lambda$. This means that $W \subseteq E_S(\mathbb{C} \setminus \Lambda)$ by the definition of algebraic spectral subspaces. Since $W \subseteq \mathfrak{S}(\theta) \subseteq E_S(\Lambda)$, we obtain that

$$W \subseteq E_S(\Lambda) \cap E_S(\mathbb{C} \setminus \Lambda) = E_S(\emptyset).$$

Since S is pure hyponormal, S has no non trivial divisible subspace. Hence $E_S(\emptyset) = \{0\}$. Therefore we have, $W = \{0\}$. Consequently, $p(S)\mathfrak{S}(\theta) = \{0\}$. Hence θ is continuous. So the proof is complete. \square

REFERENCES

- 1. I. Colojoară and C. Foiaș, *Theory of Generalized Spectral Operators*, Gordon and Breach, New York, 1968.
- 2. John B. Conway, *The Theory of Subnormal Operators*, American Mathematical Society, Providence, Rhode Island, 1991.
- 3. B. E. Johnson and A. M. Sinclair, Continuity of linear operators commuting with continuous linear operators II, Trans. Amer. Math. Soc. **146** (1969), 533–540.
- K. B. Laursen, Some remarks on automatic continuity, Spaces of Analytic Functions, Lecture Notes in Math., vol. 512, Springer-Verlag, New York, 1975, pp. 96–108.
- 5. K. B. Laursen, Automatic continuity of intertwiners in topological vector spaces, Progress in Functional Analysis, North Holland Math. Stud., vol. 170, North Holland, Amsterdam, 1992, pp. 179-190.
- 6. K. B. Laursen and M. M. Neumann, *Decomposable operators and automatic continuity*, J. Operator Theory **15** (1986), 33–51.
- 7. K.B. Laursen and M.M. Neumann, *An Introduction to Local Spectral Theory*, London Mathematical Society Monographs New Series 20, Oxford Science Publications, Oxford, 2000.
- 8. M. Martin and M. Putinar, *Lectures on Hyponormal operators*, Birkhäuser Verlag, Basel Boston Berlin, 1989.
- Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), 70–75.
- 10. A. M. Sinclair, *Automatic Continuity of Linear Operators*, London Math. Soc. Lecture Note Series, vol. 21, Cambridge Univ. Press, Cambridge, 1976.
- 11. P. Vrbová, On continuity of linear transformations commuting with generalized scalar operators in Banach spaces, Čas. pro pěst. mat. 97 (1972), 142–150.

DEPARTMENT OF APPLIED MATHEMATICS KUMOH NATIONAL UNIVERSITY OF TECHNOLOGY KUMI 730-701, KOREA

 $E ext{-}mail:$ swpark@knut.kumoh.ac.kr

**

DEPARTMENT OF MATHEMATICS SEONAM UNIVERSITY NAMWON 590-711, KOREA

 $E ext{-}mail: hyukhan@tiger.seonam.ac.kr}$

DEPARTMENT OF MATHEMATICS SEONAM UNIVERSITY NAMWON 590-711, KOREA

E-mail: swpark@tiger.seonam.ac.kr