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A CHARACTERIZATION OF THE

N–DIMENSIONAL UNIT SPHERE IN THE

2N–DIMENSIONAL DE SITTER SPACE

Joonsang Park*

Abstract. We show that an n-dimensional unit sphere in the 2n-
dimensional de Sitter space can be associated to a solution of a partial
differential equation on a Lorentzian Grassmannian system coming
from the integrable system theory.

1. Introduction

The problem of immersions of space forms into space forms is one

of the important and interesting question in the classical differential

geometry. A well-known theorem of Hilbert states that a complete 2-

dimensional Riemannian manifold of constant negative curvature, say,

the hyperbolic space form H2 cannot be isometrically immersed into

3-dimensional Euclidean space R3 [3]. The natural generalization of

the Hilbert theorem that a complete n-dimensional hyperbolic space

form Hn cannot be isometrically immersed into R2n−1 is not known

until now. The local problem of isometric immersions of space forms

in space forms was studied by Cartan [2]. He showed that there is no

immersion of Hn in R2n−2, and he constructed an example of a local

immersion of Hn in R2n−1.
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Recently, Terng [7] studied local immersions of space forms in space

forms with the same constant curvatures, or,

Rn in R2n, Sn in S2n, Hn in H2n.

She introduced a partial differential equation called an n-dimensional

system on a Lie group or on a symmetric space and showed that by

properly choosing symmetric spaces, the solutions of n-dimensional

systems on those symmetric spaces correspond to such local immer-

sions. We will call these n-dimensional systems as Grassmannian sys-

tems. This work was extensively generalized by Brück, Du, Park and

Terng [1] later. The basic idea of these works [7] and [1] is that the

fundamental equations of such immersions can be expressed by flat

connections on the ambient spaces N with values in the Lie algebras

G of the isometry groups of N , and these connections correspond to

Lax pairs on G. Thus it is plausible to expect that these phenomena

of integrable systems can be applied to submanifolds in Lorentzian

space.

The main goal of this paper is to show that locally the nondegener-

ate immersions of Riemannian manifolds Sn of constant curvature 1

with flat normal bundles in the 2n-dimensional de Sitter space S2n−1,1

correspond to the solutions of the system on O(2n, 1)/(O(n + 1) ×
O(n− 1, 1)).

2. Submanifolds in Lorentzian space

First, we introduce basic knowledge about Lorentzian geometry

and notations. For details, see [5] and [6]. Lorentzian space Rn,1

is the vector space Rn+1 with the nondegenerate metric < x, y >=

x1y1 · · ·+ xnyn − xn+1yn+1.

Suppose X : Mn → Rn+k,1 is a Riemannian isometric immersion.

A local orthonormal frame field e1, · · · , en+k+1 in Rn+k,1 is said to

be adapted to M , if when restricted to M , e1, · · · , en are tangent to
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M . From now on, we shall use the following index convention:

1 ≤ A,B, C ≤ n+k+1, 1 ≤ i, j, k ≤ n, n+1 ≤ α, β, γ ≤ n+k+1.

Let ωA be the dual coframe on Rn+k,1, that is, ωA(eB) = εAδAB ,

where, εA =< eA, eA >. Thus the first fundamental form on M is

given by I =
∑

i ωi ⊗ ωi. Let ωAB be the connection 1-form corre-

sponding to the usual differential d on Rn+k,1,

deA =
∑

B

ωAB ⊗ eB .

This induces the Levi-Civita connection ∇ on M by

∇ei =
∑

j

ωij ⊗ ej , ∇ωi =
∑

j

ωij ⊗ ωj ,

and the structure equations on M are

(2.1) dωi =
∑

j

ωij ∧ ωj .

The Gauss, Codazzi and Ricci equations are

(2.2) dωij =
∑

k

ωik ∧ ωkj +
∑
α

ωiα ∧ ωαj − c ωi ∧ ωj ,

(2.3) dωiα =
∑

k

ωik ∧ ωkα +
∑

β

ωiβ ∧ ωβα,

(2.4) dωαβ =
∑

i

ωαi ∧ ωiβ +
∑

γ

ωαγ ∧ ωγβ .

¿From (2.3) and (2.4), we get the curvature 2-form Ω on M and the

normal curvature 2-form Ων as

(2.5) Ωij =
∑
α

ωiα ∧ ωjα + c ωi ∧ ωj ,
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(2.6) Ων
αβ =

∑

i

ωiα ∧ ωiβ .

It is an elementary theorem that M has the constant sectional

curvature c if and only if

(2.7) Ωij = c ωi ∧ ωj .

The shape operator Aeα in the direction eα is defined by

(2.8) A =
∑

j,α

εαωjα ⊗ ωα ⊗ ej ,

which is identified with the second fundamental form II under the

metric isomorphism T ∗Rn+k,1 ' TRn+k,1:

(2.9) II =
∑

j,α

ωjα ⊗ ωj ⊗ eα.

Now, suppose the normal bundle is flat, i.e., Ων = 0. Then there

exists a parallel normal frame eα and it is easy to see that all the

shape operators commute by (2.6), and thus they are simultaneously

diagonalizable.

Definition. A submanifold Mn is called nondegenerate if

dim{Av|v ∈ νxM} = n.

Proposition 2.1. Suppose Mn of Rn+k,1 is a nondegenerate sub-

manifold with the flat normal bundle. Then n ≤ k + 1.

Proof. Since Ων = 0, we can take an orthonormal basis ei of which

are common eigenvectors of Av for any v ∈ νxM . According to this

basis, Av is identified with a set of diagonal matrices. Since Mn is

nondegenerate, the common eigenvalues of A are linearly independent

functions on νxM and thus k + 1 = dim νxM ≥ dim{Av}. ¤
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Hence k+1 is the minimal codimension for nondegenerate isometric

immersions with the flat normal bundle.

Definition. The de Sitter space Sn+k−1,1 in Rn+k,1 is defined by

Sn+k−1,1 = {x ∈ Rn+k,1| < x, x >= 1}.

It is well-known that Sn+k−1,1 is a pseudo-Riemannian manifold

with constant sectional curvature 1.

Now, we describe the geometry of the unit sphere Sn in S2n−1,1

which is nondegenerate and has the flat normal bundle.

Theorem 2.2. Let X : O ⊂ Sn −→ S2n−1,1 be a nondegenerate

local immersion of the Riemannian manifold Sn of constant sectional

curvature 1 with the flat normal bundle. Then there exist a coordinate

system x = (x1, · · · , xn) on O, a normal frame eα, b = (b1, · · · , bn) :

O −→ Rn and an n × n matrix A = (aij) : O −→ SO(n − 1, 1) such

that the first and second fundamental forms are given by

(2.10) I =
∑

i

b2
i dx2

i ,

(2.11) II =
∑

i,j

a−1
ij bidx2

i ⊗ en+j .

Proof. Since Ων = 0, we can choose a parallel normal frame eα

and the common principal directions ei. The result follows from the

nondegeneracy and the argument as in [2] or [4]. ¤

3. Lorentzian Grassmannian systems

G/K systems are introduced in [7] as first flows of integrable sys-

tems of evolution, where all the variables are on equal footing to play

roles as time variables and the first flows in each variable is a first

flow. We will review definitions briefly. For more details, see [7].
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Let G/K be a rank n symmetric space, σ : G → G the correspond-

ing involution, G = K + P the Cartan decomposition, and A ⊂ P a

maximal abelian subalgbra. Let a1, . . . , an be a basis for A consist-

ing of regular elements with respect to the Ad(K)-action on P. Let

A⊥ denote the orthogonal complement of A in G with respect to the

Killing form. Then G/K system for v : Rn → P ∩A⊥ is

[ai, vxj
]− [aj , vxi

] =
[
[ai, v], [aj , v]

]
, 1 ≤ i 6= j ≤ n,

where, vxi = ∂v
∂xi

. This system is equivalent to the following Lax pair:
[ ∂

∂xi
+ λai + [ai, v],

∂

∂xj
+ λaj + [aj , v]

]
= 0, ∀λ ∈ C.

The Cauchy problem for G/K system can be solved for any generic

data decaying rapidly along (x1, 0, . . . , 0) (cf. [7]).

We can also express G/K system in terms of a connection 1-form

on the trivial principal bundle Rn×G on Rn. To see this, we need the

following proposition, which can be proved by a direct computation.

We assume all Lie groups are subgroups of GL(n) in this paper.

Proposition 3.1. Given smooth maps Ai : Rn → G for 1≤ i ≤ n,

the following statements are equivalent:

(1) Exi = EAi is solvable for E : Rn → G,

(2) [ ∂
∂xi

+ Ai,
∂

∂xj
+ Aj ] = 0,

(3) (Aj)xi − (Ai)xj + [Ai, Aj ] = 0,

(4) dθ + θ ∧ θ = 0, where θ is the G-valued 1-form
∑n

i=1 Axidxi.

In this case, we call E a trivialization of θ and it satisfies E−1dE =

θ.

Suppose E is a trivialization of θ, E−1dE = θ. Let g : Rn → G.

The gauge transformation of E by g is defined as g ∗E = Eg−1. This

induces a new flat connection

(Eg−1)−1d(Eg−1) = gθg−1 − dgg−1.
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We call g ∗ θ = gθg−1 − dgg−1, the gauge transformation of θ by g.

It is easy to see that v is a solution for G/K system if and only if

the following one-parameter family of GC-valued connections on Rn

is flat:

Θλ =
n∑

i=1

(aiλ + [ai, v])dxi.

Now, we introduce the system on O(2n, 1)/(O(n+1)×O(n−1, 1)).

Let G = so(2n, 1) and σ : G → G be an involution defined by

σ(X) = I−1
n+1,nXIn+1,n, where Ip,q =

(
Ip 0
0 −Iq

)
.

Then the Cartan decomposition is G = K + P, where

K =
{(

Y1 0
0 Y2

) ∣∣∣∣ Y1 ∈ so(n + 1), Y2 ∈ so(n− 1, 1)
}

,

P =








0 0 F
0 0 b

−JF t −Jbt 0




∣∣∣∣ F ∈ gl(n), b ∈Mn×1



 .

Here, we denote by Mp×q the set of p × q matrices and J =

diag(ε1, · · · , εn), −εn = ε1 = · · · = εn−1 = 1. It is easy to see that

A =








0 0 CJ
0 0 0
−C 0 0




∣∣∣∣ C ∈ gl(n) is diagonal





is a maximal abelian subalgebra in P. Put

ai =




0 0 CiJ
0 0 0
−Ci 0 0


 ,

where, Ci is the diagonal matrix whose i-th entry is 1 and 0 elsewhere.

Then a1, . . . , an form a basis of A.
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Let gl∗(n) = {(xij) ∈ gl(n) | xii = 0, 1 ≤ i ≤ n}. Then any ele-

ment v ∈ P ∩ A⊥ is expressed as

v =




0 0 F
0 0 b

−JF t −Jbt 0


 ,

where, F ∈ gl∗(n).

By a direct calculation, we obtain

Proposition 3.2. v : Rn → P ∩ A⊥ is a solution of the system

O(2n, 1)/(O(n + 1)×O(n− 1, 1)) if and only if v satisfies





(fij)xi + (fji)xj =
∑n

k=1 fkifkj + bibj , for i 6= j,

(fij)xk
+ fikfkj = 0, for distinct i, j, k,

(bj)xi + bifij = 0, for i 6= j,

εj(fij)xj + εi(fji)xi =
∑n

k=1 εkfikfjk, for i 6= j.

The corresponding 1-parameter family of flat connection 1-forms is

(3.1)

Θλ =
n∑

i=1

(aiλ + [ai, v])dxi

=
∑

i




FCi − CiF
t −Cib

t λCiJ
bCi 0 0
−λCi 0 JF tCiJ − CiF


 dxi

=



−ω −δbt λδJ
bδ 0 0
−λδ 0 η


 ,

where, δ = diag(dx1, · · · , dxn), ω = −(δF−F tδ) and η = JδF tJ−Fδ.

In this case, since v is determined by (F, b), we will say that (F, b)

is a solution of this system instead of v being a solution. We restate

Proposition 3.2 in terms of (F, b);
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Theorem 3.3. (F, b) is a solution of O(2n, 1)/(O(n + 1)×O(n−
1, 1)) system if and only if (F, b) satisfies

(3.2)





dη + η ∧ η = 0,

dω = ω ∧ ω − δb ∧ btδ,

δ ∧ db + ω ∧ δb = 0,

δ ∧ η = ω ∧ δ.

4. Main Theorems

Let X be a local immersion of Sn in S2n−1,1 as in theorem 2.2.

Choose a tangent frame ei = 1
bi

∂
∂xi

and let ω = (ωij) be its connection

1-form, i.e.,

ωij = − (bi)xj

bj
dxi +

(bj)xi

bi
dxj , i 6= j.

Denote δ = diag(dx1, · · · , dxn). Taking F = (fij) ∈ gl∗(n) with

fij =
(bi)xj

bj
, we obtain ω = −(δF − F tδ) and the Gauss equations

(2.2) become

dω = ω ∧ ω − δb ∧ btδ.

It is easy to prove that the Codazzi equations (2.3) are equivalent to

(4.1) δ ∧A−1dA = ω ∧ δ = −δFδ.

Put η = JδF tJ − Fδ, then

(4.2) δ ∧ η = ω ∧ δ and thus δ ∧A−1dA = δ ∧ η.

Lemma 4.1. dη = A−1dA and dη + η ∧ η = 0.

Proof. By (4.1), δ∧dη = δ∧A−1dA and hence A−1dA = η+δD for

some D = (dij) ∈ gl∗(n) since A−1dA, η ∈ so(n − 1, 1). Evaluating

this at ( ∂
∂xi

, ∂
∂xj

) and ( ∂
∂xj

, ∂
∂xi

), we have
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∑

k

εiεkaki(akj)xj
= fij + dij , i 6= j,

∑

k

εjεkaki(akj)xi = −fji, i 6= j.

But since A ∈ SO(n− 1, 1), JAtJA = I and thus

fij + dij =
∑

k

εiεkaki(akj)xj = −
∑

k

εiεkaki(akj)xi = −(−fij).

Hence dij = 0. dη+η∧η = 0 follows easily from dη = A−1dA. ¤

We summarize the above arguments and the lemma to conclude

Theorem 4.2. A nondegenerate local immersion X of the Rie-

mannian manifold O ⊂ Sn in S2n−1,1 of constant sectional curvature

1 with the flat normal bundle as in Theorem (2.2) gives rise to a

solution (F, b) of the system on O(2n, 1)/(O(n + 1)×O(n− 1, 1)).

In fact, they are related by

F =
(

(bi)xj

bj

)
, ω = −(δF−F tδ) and A−1dA = η = JδF tJ−Fδ.

Proof. Taking en+1 = −X, we can construct a so(2n−1, 1)/(so(n+

1)× so(n− 1, 1))-valued flat connection from the Theorem 2.2,

(4.3) θ =




−ω −δbt δA
bδ 0 0

−JA−1δ 0 0


 .

Take a gauge transformation g =
(

A 0
0 I

)
on θ gives g∗θ = Θ1, where

Θλ is as in (3.1). Therefore we get a flat connection Θλ for any λ ∈ C

and hence (F, b) is a solution of the O(2n−1, 1)/(O(n+1)×O(n−1, 1))

system. ¤

Conversely, we have
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Theorem 4.2. A solution (F, b) of the system on O(2n, 1)/(O(n−
1, 1) × O(n + 1)) gives rise to a nondegenerate local immersion X of

the Riemannian manifold O ⊂ Sn in S2n−1,1 of constant sectional

curvature 1 with the flat normal bundle.

Proof. We have a flat connection Θλ from (F, b). Taking a gauge

transformation h =
(

A−1 0
0 I

)
on Θ1 gives h ∗ Θ1 = θ, where θ is

given by (4.3). Let E = (e1, · · · , e2n) be the trivialization of θ. Put

X = −en+1, then < X, X >= 1 and thus X lies on S2n−1,1. Now, X

gives the required immersion. ¤
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