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TWO JUMPING NONLINEAR TERMS AND A
NONLINEAR WAVE EQUATION

Tacksun Jung* and Q-Heung Choi**

Abstract. We find the multiple nontrivial solutions of the equa-
tion of the form utt−uxx = b1[(u + 1)+− 1] + b2[(u + 2)+− 2] with
Dirichlet boundary condition. Here we reduce this problem into
a two-dimensional problem by using variational reduction method
and apply the Mountain Pass theorem to find the nontrivial solu-
tions.

1. Introduction

We investigate the existence of nontrivial solutions u(x, t) for a per-
turbation b1[(u + 1)+ − 1] + b2[(u + 2)+ − 2] of the one-dimensional
nonlinear wave equation

utt−uxx = b1[(u + 1)+− 1] + b2[(u + 2)+− 2] in (−π

2
,
π

2
)×R, (1.1)

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t),

where u+ = max{u, 0}, b1, b2 are constants. This equation satisfies
Dirichlet boundary condition on the interval (−π

2 , π
2 ) and periodic con-

dition on the variable t.
In [6] Lazer and McKenna point out that this kind of nonlinearity

b[(u + 1)+ − 1] can furnish a model to study traveling waves in suspen-
sion bridges. So the nonlinear equation with jumping nonlinearity have
been extensively studied by many authors. For fourth elliptic equation
Tarantello [11] , Micheletti and Pistoia [8] [9] proved the existence of
nontrivial solutions used degree theory and critical points theory sep-
arately. For one-dimensional case Lazer and McKenna [7] proved the
existence of nontrivial solution by the global bifurcation method. For
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this jumping nonlinearity we are interest in the multiple nontrivial so-
lutions of the equation. Here we used variational reduction method to
find the nontrivial solutions of problem (1.1).

The organization of this paper is as following. In section 2, we inves-
tigate some properties of the Hilbert space spanned by eigenfunctions
of the wave operator. We show that only the trivial solution exists for
the steady state problem of (1.1) when b < 0. And problem (1.1) has
only trivial solution for −3 < b1, b2 < 1 and −3 < b1 + b2 < 1. In
section 3 we state the Mountain Pass Theorem. In section 4 we use the
variational reduction method to apply mountain pass theorem in order
to get the main result that (1.1) has at least three periodic solutions for
−7 < b1, b2 < −3 −7 < b1 + b2 < −3 and two of them are nontrivial.

2. Preliminaries

Let L be the wave operator in R2, i.e., Lu = utt−uxx. The eigenvalue
problem

Lu = λu in (−π

2
,
π

2
)× R, (2.1)

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t)

has infinitely many eigenvalues λmn = (2n+1)2−4m2 (m,n = 0, 1, 2, ...)
and corresponding normalized eigenfunctions φmn, ψmn(m,n ≥ 0) given
by

φ0n =
√

2
π

cos (2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt · cos (2n + 1)x for m > 0, n ≥ 0,

ψmn =
2
π

sin 2mt · cos (2n + 1)x for m > 0, n ≥ 0.

Let n be fixed and define

λ+
n = infm{λmn : λmn > 0} = 4n + 1,

λ−n = supm{λmn : λmn < 0} = −4n− 3.

Then we obtain that lim
n→∞λ+

n = +∞, lim
n→−∞λ−n = −∞. Thus it is easy

to check that the only eigenvalues in the interval (-15, 9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.
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Let Ω be the square (−π/2, π/2)×(−π/2, π/2) and H0 the Hilbert space
defined by

H0 = {u ∈ L2(Ω) : u is even in x}.
The set of functions {φmn, ψmn} is an orthonormal basis in H0. Let

us denote an element u in H0 as

u =
∑

(hmnφmn + kmnψmn),

and we define a subspace H of H0 as

H = {u ∈ H0 :
∑

|λmn|(h2
mn + k2

mn) < ∞}.
Then this is a complete normed space with a norm

‖u‖H = [
∑

|λmn|(h2
mn + k2

mn)]
1
2 .

Since |λmn| ≥ 1 for all m,n, we have that
(i) ‖u‖H ≥ ‖u‖, where ‖u‖ denotes the L2 norm of u,
(ii)‖u‖ = 0 if and only if ‖u‖H = 0.

Define Lβu = Lu + βu. Then we have the following lemma( [4]).

Lemma 2.1. Let β ∈ R , β 6= −λmn (m,n ≥ 0). Then we have:

L−1
β is a bounded linear operator from H0 into H.

Theorem 2.2. Let −3 < b1, b2 < 1 and −3 < b1 + b2 < 1. Then the
equation, with Dirichlet boundary condition,

Lu = b1[(u + 1)+ − 1] + b2[(u + 2)+ − 2]

has only the trivial solution in H0.

Proof. Since λ10 = −3 and λ00 = 1, let β = −1
2(λ00+λ10) = −1

2(−3+
1) = 1. The equation is equivalent to

u = (L + β)−1(b1[(u + 1)+ − 1] + b2[(u + 2)+ − 2] + βu). (2.2)

By Lemma 2.1 (L + β)−1 is a compact linear map from H0 into H0.
Therefore its L2 norm 1

2 . We note that

‖b1[(u1 + 1)+ − (u2 + 1)+] + b1[(u1 + 2)+ − (u2 + 2)+] + β(u1 − u2)‖
≤ max{|b1 + β|, |b2 + β|, |b1 + b2 + β|, |β|}‖u1 − u2‖
<

1
2
(λ00 − λ10)‖u1 − u2‖

= 2‖u1 − u2‖.
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So the right hand side of (2.2) defines a Lipschitz mapping of H0

into H0 with Lipschitz constant γ < 1. Therefore, by the contraction
mapping principle, there exists a unique solution u ∈ H0. Since u ≡ 0
is a solution of equation (2.2), u ≡ 0 is the unique solution.

3. Mountain Pass Theorem

The mountain pass theorem concerns itself with proving the existence
of critical points of functional I ∈ C1(E,R) which satisfy the Palais-
Smale(PS) condition, which occurs repeatedly in critical point theory.

We say that I satisfies the Palais-Smale condition if any sequence
{um} ⊂ E for which I(um) is bounded and I ′(um) → 0 as m → ∞
possesses a convergent sequence.

The following deformation theorem is stated in [11].

Theorem 3.1. Let E be a real Banach space and I ∈ C1(E, R). Sup-
pose I satisfies Palais-Smale condition. Let N be a given neighborhood
of the set Kc of the critical points of I at a given level c. Then there
exists ε > 0, as small as we want, and a deformation η : [0, 1]× E → E
such that, denoting by Ab the set {x ∈ E : I(x) ≤ b}:

(i) η(0, x) = x ∀x ∈ E,
(ii) η(t, x) = x ∀x ∈ Ac−2ε ∪ (E\Ac+2c),∀t ∈ [0, 1],
(iii) η(1, ·)(Ac+ε\N) ⊂ Ac−ε.

We state the Mountain Pass Theorem.

Theorem 3.2. Let E be a real Banach space and I ∈ C1(E,R) satisfy
(PS) condition. Suppose
(I1) there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ I(0) + α, and

(I2) there is an e ∈ E\B̄ρ such that I(e) ≤ I(0).
Then I possesses a critical value c ≥ α. Moreover c can be characterized
as

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where

Γ = {g ∈ C([0, 1] , E)|g(0) = 0, g(1) = e}.
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4. Multiple nontrivial solutions

We investigate the existence of multiple solutions of (1.1) when −7 <
b1, b2 < −3 −7 < b1 + b2 < −3. We define a functional on H by

J(u) =
∫

Ω
[
1
2
(−|ut|2 + |ux|2)− b1

2
|(u + 1)+|2 + b1u

−b2

2
|(u + 2)+|2 + 2b2u]dxdt. (4.1)

So J is well-defined in H and the solutions of (1.1) coincide with the
critical points of J(u). Now we investigate the property of functional J .

Lemma 4.1. (cf. [4]) J(u) is continuous and Frechet differentiable at
each u ∈ H with

DJ(u)v =
∫

Ω
(Lu− b1(u + 1)+ + b1 − b2(u + 2)+ + 2b2)vdxdt, v ∈ H.

We shall use a variational reduction method to apply the mountain
pass theorem.

Let V = closure of span{φ10, ψ10} be the two-dimensional subspace
of H. Both of them have the same eigenvalue λ10. Then ‖v‖H =

√
3‖v‖

for v ∈ V . Let W be the orthogonal complement of V in H. Let
P : H → V denote that of H onto V and I − P : H → W denote that
of H onto W . Then every element u ∈ H is expressed by

u = v + w,

where v = Pu, w = (I − P )u.

Lemma 4.2. Let −7 < b1, b2 < −3 and −7 < b1 + b2 < −3. Let
v ∈ V be given. Then we have: there exists a unique solution z ∈ W of
equation

Lz + (I − P )[−b1(v + z + 1)+ + b1 − b2(v + z + 2)+ + 2b2] = 0 in W.

Let z = θ(v), then θ satisfies a uniform Lipschitz continuous on V with
respect to the L2 norm(also the norm ‖ · ‖H).

Proof. Choose β = 3 and let g(ξ) = b1(ξ + 1)+ + b2(ξ + 2)+ + βξ.
Then equation (4.2) can be written as

z = (L + β)−1(I − P )[g(v + z)− (b1 + b2)]. (4.3)

Since (L + β)−1(I − P ) is a self-adjoint, compact, linear map from
(I − P )H into itself, the eigenvalues of (L + β)−1(I − P ) in W are
(λ + β)−1, where λmn > 1 or λmn ≤ −7. Therefore ‖(L + β)−1(I − P )‖
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is 1
4 . Since |g(ξ1)−g(ξ2)| ≤ max{|b1+β|, |b2+β|, |b1+b2+β|, |β|}|ξ1−ξ2|

< 4|ξ1 − ξ2|,
the right-hand side of equation (4.3) defines a Lipschitz mapping if (I −
P )H0 into itself for fixed v ∈ V . By the contraction mapping principle
there exists a unique z ∈ (I−P )H0 (also z ∈ (I−P )H) for fixed v ∈ V .
Since (L + β)−1 is bounded from H to W there exits a unique solution
z ∈ W of (4.3) for given v ∈ V .

Let

γ =
max{|b1 + β|, |b2 + β|, |b1 + b2 + β|, |β|}

4
.

Then 0 < γ < 1. If z1 = θ(v1) and z2 = θ(v2) for any v1, v2 ∈ V , then

‖z1 − z2‖ ≤ ‖(L + β)−1(I − P )‖ ‖(g(v1 + z1)− g(v2 + z2))‖
≤ 1

4
· 4γ‖(v1 + z1 + 1)− (v2 + z2 + 1)‖

≤ γ(‖v1 − v2‖+ ‖z1 − z2‖).
Hence

‖z1 − z2‖ ≤ γ

1− γ
‖v1 − v2‖.

Since ‖(L + β)−1(I − P )‖H ≤ 1√
2
‖u‖,

‖z1 − z2‖H = ‖(L + β)−1(I − P )(g(v1 + z1)− g(v2 + z2))‖H

≤ 4√
2
(‖z1 − z2‖+ ‖v1 − v2‖)

≤ 4√
6
(

1
1− γ

)‖v1 − v2‖H .

Therefore θ is continuous on V with norm ‖ · ‖ and ‖ · ‖H .

Lemma 4.3. If J̃ : V → R is defined by J̃(v) = J(v + θ(v)), then J̃

is a continuous Frechet derivative DJ̃ with respect to V and

DJ̃(v)s = DJ(v + θ(v))(s) for all s ∈ V.

If v0 is a critical point of J̃ , then v0 + θ(v0) is a solution of (1.1) and
conversely every solution of (1.1) is of this form.

Proof. Let v ∈ V and set z = θ(v). If w ∈ W , then from (4.2)
∫

Ω
(−θ(v)twt + θ(v)xwx − b1(v + θ(v) + 1)+w

+b1w − b2(v + θ(v) + 2)+w + 2b2w)dtdx = 0.
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Since
∫
Ω vtwt = 0 and

∫
Ω vxwx = 0,

DJ(v + θ(v))(w) = 0 for all w ∈ W.

Let W1, W2 be the two subspaces of H as defining following:

W1 = closure of span{φmn, ψmn|λmn ≤ −7},
W2 = closure of span{φmn, ψmn|λmn ≥ 1}.

Given v ∈ V and consider the function h : W1 ×W2 → defined by

h(w1, w2) = J(v + w1 + w2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

D1h(w1, w2)(y1) = DJ(v + w1 + w2)(y1) for y1 ∈ W1,

D2h(w1, w2)(y2) = DJ(v + w1 + w2)(y2) for y2 ∈ W2.

Therefore let θ(v) = θ1(v) + θ2(v) with θ1(v) ∈ W1 and θ2(v) ∈ W2.
Then by Lemma 4.2

D1h(θ1(v), θ2(v))(y1) = 0, for y1 ∈ W1

D2h(θ1(v), θ2(v))(y2) = 0, for y2 ∈ W2.

If w2, y2 ∈ W2 and w1 ∈ W1, then

[Dh(w1, w2)−Dh(w1, y2)](w2 − y2)
= (DJ(v + w1 + w2)−DJ(v + w1 + y2))(w2 − y2)

=
∫

Ω
−|(w2 − y2)t|2 + |(w2 − y2)2x| − b1[(v + w1 + w2 + 1)+

−(v + w1 + y2 + 1)+ − b2(v + w1 + w2 + 2)+

−(v + w1 + y2 + 2)+](w2 − y2)dtdx.

Since (s+− t+))(s− t) ≥ 0 for any s, t ∈ R and −7 < b1, b2, b1 +b2 < −3,
it is easy to know that∫

Ω
−b1[(v + w1 + w2 + 1)+ − (v + w1 + y2 + 1)+](w2 − y2)

−b2[(v + w1 + w2 + 2)+ − (v + w1 + y2 + 2)+](w2 − y2)dxdt ≥ 0.

And ∫

Ω
[−|(w2 − y2)t|2 + (w2 − y2)2x]dtdx = ‖w2 − y2‖2

H ,

it follows that

(Dh(w1, w2)−Dh(w1, y2))(w2 − y2) ≥ ‖w2 − y2‖2
H .
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Therefore, h is strictly convex with respect to the second variable. Simi-
larly, using the fact that −b(s+−t+)(s−t) ≤ −b(s−t)2 for any s, t ∈ R,if
w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2) − D1h(y1, w2))(w1 − y1)
≤ −‖w1 − y1‖2

H − b1‖w1 − y1‖2 − b2‖w1 − y1‖2

≤ (−1− b1 + b2

7
)‖w1 − y1‖2

H ,

where −7 < b1 + b2 < −3. Therefore, h is strictly concave with respect
to the first variable. From equation (4.1) it follows that

J(v + θ1(v) + θ2(v)) ≤ J(v + θ1(v) + y2) for any y2 ∈ W2,

J(v + θ1(v) + θ2(v)) ≥ J(v + y1 + θ2(v)) for any y1 ∈ W1,

with equality if and only if y1 = θ1(v), y2 = θ2(v).
Since h is strictly concave (convex) with respect to its first (second)
variable, Theorem 2.3 of [1] implies that J̃ is C1 with respect to v and

DJ̃(v)(s) = DJ(v + θ(v))(s), any s ∈ V.

Suppose that there exists v0 ∈ V such that DJ̃(v0) = 0. From (4.5)
it follows that DJ(v0 + θ(v0))(v) = 0 for all v ∈ V . Then by Lemma
4.2 it follows that DJ(v0 + θ(v0))v = 0 for any v ∈ H. Therefore,
u = v0 + θ(v0) is a solution of (1.1).

Conversely if u is a solution of (1.1) and v0 = Pu, then DJ̃(v0)v = 0
for any v ∈ H.

Lemma 4.4. Let −7 < b1, b2 < −3 and −7 < b1 + b2 = b < −3. Then
there exists a small open neighborhood B of 0 in V such that v = 0 is a
strict local minimum of J̃ .

Proof. Since −7 < b1, b2 < −3 and −7 < b1 + b2 = b < −3, problem
(1.1) has a trivial solution u0 = 0 by the theorem of [4]. Then we have
0 = u0 = v + θ(v). Since the subspace W is orthogonal complement of
subspace V , we get v = 0 and θ(v) = 0. Furthermore θ(0) is the unique
solution of equation (4.2) in W for v = 0. Thus the trivial solution u0

is of the form u0 = 0 + θ(0) and I + θ, where I is an identity map on V ,
is continuous, it follows that there exists a small open neighborhood B
of 0 in V such that if v ∈ B then v + θ(v) + 1 > 0, v + θ(v) + 2 > 0. By
Lemma 4.2, θ(0) = 0 is the solution of (4.3) for any v ∈ B Therefore, if
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v ∈ B, then for z = θ(v) we have z = 0. Thus

J̃(v) = J(v + z)

=
∫

Ω
[
1
2
(−|(v + z)t|2 + |(v + z)x|2)− b1

2
|(v + z + 1)+|2

+b1(v + z)− b2

2
|(v + z + 2)+|2 + b2(v + z)]dtdx

=
∫

Ω
[
1
2
(−|vt|2 + |vx|2)− b1

2
(v + 1)2 + b1v

−b2

2
(v + 2)2 + 2b2v]dtdx

=
∫

Ω
[
1
2
(−|vt|2 + |vx|2)− b1

2
v2 − b1

2
− b2

2
v2 − 2b2]dtdx.

If v ∈ V , then Lv = −3v.Therefore in B,

J̃(v) = J̃(v)− J̃(0)

=
∫

Ω
[
1
2
(−|vt|2 + |vx|2)− b

2
v2]dtdx

=
1
2
(−3− b)

∫

Ω
v2dtdx ≥ 0,

where −7 < b < −3. It follows that v = 0 is a strict local point of
minimum of J̃ .

Proposition 4.5. If −7 < b < 1 , then the equation Lu − bu+ = 0
admits only the trivial solution u = 0 in H0.

Proof. H1 = span{cosx cos 2mt,m ≥ 0} is invariant under L and
under the map u 7→ bu+. So the spectrum σ1 of L retracted to H1

contains λ10 = −3 in (−7, 1). the spectrum σ2 of L retracted to H2 =
H⊥

1 contains λ10 = −3 in (−7, 1). From the symmetry theorem in [?],
any solution y(t)cosx of this equation satisfies y

′′
+ y − by+ = 0.This

nontrivial periodic solution is periodic with periodic π +
π√−b + 1

6= π.

This shows that there is no nontrivial solution of Lv − bv+ = 0.

Lemma 4.6. Let b = b1 + b2 and −7 < b1, b2, b < −3. Then the
functional J̃ , defined on V , satisfies the Palais-Smale condition.

Proof. Let {vn} ⊂ V be a Palais-Smale sequence that is J̃(vn) is
bounded and DJ̃(vn) → 0 in V . since V is two-dimensional it is enough
to prove that {vn} is bounded in V .
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Let un be the solution of (1.1) with un = vn + θ(vn) where vn ∈ V .
So

Lun − b1(un + 1)+ + b1 − b2(un + 2)+ + 2b2 = DJ(un) in H.

By contradiction we suppose that ‖vn‖ → +∞, also ‖un‖ → +∞. Di-
viding by ‖un‖ and taking wn = un

‖un‖ we get

Lwn − b1(wn +
1

‖un‖)+ +
b1

‖un‖ − b2(wn +
2

‖un‖)+

+
2b2

‖un‖ =
(DJ(un))
‖un‖ → 0. (4.6)

Since ‖wn‖ = 1 we get : wn → w0 weakly in H0. By L−1 is a compact
operator, passing to a subsequence we get : wn → w0 strongly in H0.
Taking the limit of both sides of (4.6), it follows

Lw0 − bw+
0 = 0,

with ‖w0‖ 6= 0. This contradicts to the fact that for −7 < b < −3 the
following equation

Lu− bu+ = 0 in H0

has only the trivial solution by Proposition. Hence {vn} is bounded in
V .

We now define the functional on H

J∗(u) =
∫

Ω
[−1

2
(−|ut|2 + |ux|2)− b

2
|u+|2dxdt.

The critical points of J∗(u) coincide with solutions of the equation

Lu− bu+ = 0 in H0

The above equation has only the trivial solution and hence J∗(u) has
only one critical point u = 0.

Given v ∈ V , let θ∗(v) = θ(v) ∈ W be the unique solution of the
equation

Lz + (I − P )[−b1(v + z + 1)+ + b1 − b2(v + z + 2)+ + 2b2] = 0 in W,

where −7 < b1, b2, b1+b2 = b < −3. Let us define the reduced functional
J̃∗(v) on V by J(v+θ∗(v)). We note that we can obtain the same results
as Lemma 4.1 and Lemma 4.2 when we replace θ(v) and J̃(v) by θ∗(v)
and J̃∗(v). We also note that, for −7 < b < −3, J̃∗(v) has only one
critical point v = 0.

Lemma 4.7. Let −7 < b1, b2 < −3, b = b1 + b2 and −7 < b < −3.
Then we have: J̃∗(v) < 0 for all v ∈ V with v 6= 0.
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The proof of the lemma can be found in [4].

Lemma 4.8. Let −7 < b1, b2 < −3, b = b1 + b2 and −7 < b < −3.
Then we have

lim
‖v‖→∞

J̃(v) → −∞

for all v ∈ V (certainly for also the norm ‖ · ‖H).

The proof of the lemma can be found in [4].
Now we have the main result in this paper:

Theorem 4.9. Let −7 < b1, b2 < −3, b = b1 + b2 and −7 < b < −3.
Then there exists at least three solutions of the equation

utt − uxx = b1[(u + 1)+ − 1] + b2[(u + 2)+ − 2] in (−π

2
,
π

2
)× R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t).

and two of them are nontrivial solutions.

Proof. We remark that u = 0 is the trivial solution of problem (1.1).
Then v = 0 is a critical point of functional J̃ . Next we want to find
others critical points of J̃ which are corresponding to the solutions of
problem (1.1).

By Lemma 4.4, there exists a small open neighborhood B of 0 in
V such that v = 0 is a strict local point of minimum of J̃ . Since

lim
‖v‖H→∞

J̃(v) → −∞ from Lemma 4.7 and V is a two-dimensional space,

there exists a critical point v0 ∈ V of J̃ such that

J̃(v0) = max
v∈V

J̃(v).

Let Bv0 be an open neighborhood of v0 in V such that B∩Bv0 =. Since
lim

‖v‖H→∞
J̃(v) → −∞, we can choose v1 ∈ V \(B∪Bv0) such that J̃(v1) <

J̃(0). Since J̃ satisfies the Palais-Smale condition, by the Mountain Pass
Theorem (Theorem 3.2) there is a critical value

c = inf
γ∈Γ

sup
γ

J̃(v),

where Γ = {γ ∈ C([0, 1] , E)|γ(0) = 0, γ(1) = v0}.
If J̃(v0) 6= c, then there exists a critical point v of J̃ at level c such

that v 6= v0, 0 ( since c 6= J̃(v0) and c > J̃(0) ). Therefore, in case
J̃(v0) 6= c, the functional J̃(v) has also at least 3 critical points 0, v0, v.
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If J̃(v0) = c, then define

c′ = inf
γ∈Γ′

sup
γ

J̃(v)

where Γ′ = {γ ∈ Γ : γ ∩Bv0 =}. Hence

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ inf
γ∈Γ′

sup
γ

J̃(v) ≤ max
v∈V

J̃(v) = c.

That is c = c′. By contradiction assume Kc = {v ∈ V |J̃(v) = c,DJ̃(v) =
0} = {v0}. Use the functional J̃ for the deformation theorem (theorem
4.1) and taking ε < 1

2(c− J̃(0)). We choose γ ∈ Γ′ such that supγ J̃ ≤ c.
From the deformation theorem (Theorem 4.1) η(1, ·) ◦ γ ∈ Γ and

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ sup
η(1,·)◦γ

J̃(v) ≤ c− ε,

which is a contradiction. Therefore, there exists a critical point v of J̃
at level c such that v 6= v0, 0, which means that the equation (1.1) has
at least three critical points. Since ‖v‖H , ‖v0‖H 6= 0, these two critical
points coincide with two nontrivial period solutions of problem (1.1).
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