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LOCAL REGULARITY OF THE STEADY STATE
NAVIER-STOKES EQUATIONS NEAR BOUNDARY IN

FIVE DIMENSIONS

Jaewoo Kim* and Myeonghyeon Kim**

Abstract. We present a new regularity criterion for suitable weak
solutions of the steady-state Navier-Stokes equations near boundary
in dimension five. We show that suitable weak solutions are regular

up to the boundary if the scaled L
5
2−norm of the solution is small

near the boundary. Our result is also valid in the interior.

1. Introduction

In this paper, we study suitable weak solutions (u, p) : Ω → R5×R to
the stationary Navier-Stokes equations in a bounded domain Ω in five
dimensions{ −∆u + (u · ∇)u +∇p = f, div u = 0 in Ω,

u = 0 on ∂Ω.
(1.1)

Here f is an external force and Ω is a bounded domain with C2 boundary.
After existence of weak solutions was proved by Leray [11] and Hopf

[8] for the time dependent case in dimension three (see also [10] for steady
state case), regularity question has remained open. The five dimensional
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steady-state Navier-Stokes equations has some similarities, e.g. dimen-
sionless quantities due to scaling invariance, to the three dimensional
Navier-Stokes equations. Furthermore, it is of independent interest itself
since five dimension is the smallest dimension where stationary Navier-
Stokes equations is super-critical (compare to [6]). Partial regularity was
proved in [14] and [7] for the interior and boundary cases, respectively.
The main point in [14] and [7] is that if the scaling invariant quantity
1
r

∫
Ω∩Bx,r

|∇u|2 dx, under the scaling u(x) → λu(λx), is sufficiently small
for x ∈ Ω̄, then u is regular at x. This implies that the one-dimensional
Hausdorff measure of possible singular set is zero (compare to [1] and
[13] in three dimensional time dependent case). The five dimensional
steady-state Navier-Stokes equations have been also studied in a num-
ber of papers (see e. g. [2, 3, 4, 5]).

For a point x = (x′, x5) ∈ R5 with x′ ∈ R4 we denote

Bx,r = {y ∈ R5 : |y − x| < r}, Dx′,r = {y′ ∈ R4 :
∣∣y′ − x′

∣∣ < r}.
For x ∈ Ω̄, we use the notation Ωx,r = Ω∩Bx,r for some r > 0. If x = 0,
we drop x in the above notations, for instance Ω0,r is abbreviated to Ωr.

A solution u to (1.1) is said to be regular at x ∈ Ω̄ if u ∈ L∞(Ω̄x,r)
for some r > 0. In such case, x is called a regular point. Otherwise we
say that u is singular at x and x is a singular point.

We first make some assumptions on the boundary of Ω.

Assumption 1.1. Suppose that Ω is a domain with C2 boundary
such that the following is satisfied: For each point x = (x′, x5) ∈ ∂Ω
there exist L and r0 independent of x such that we can find a Cartesian
coordinate system {yi}5

i=1 with the origin at x and a C2 function ϕ :
Dr0 → R satisfying

Ωr0 = Ω ∩Bx,r0 =
{
y = (y′, y5) ∈ Bx,r1 : y5 > ϕ(y′)

}

and
ϕ(0) = 0, ∇yϕ(0) = 0, sup

Dr0

∣∣∇2
yϕ

∣∣ ≤ L.

Remark 1.2. The main condition on Assumption 1.1 is the uniform
estimate of the C2−norms of the function ϕ for each x ∈ ∂Ω. More
precisely, there exists a sufficiently small r1 with r1 < r0, where r0 is
the number in Assumption 1.1 such that for any r < r1

(1.2) sup
x∈∂Ω

‖ϕ‖C2(Dr) ≤ L(1 + r + r2).

This can be verified by the Taylor’s formula.
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We recall a class of functions, Morrey type space, denoted by M2,γ(Ω)
for some 0 < γ ≤ 2 so that f ∈ M2,γ(Ω) is equipped with the norm

‖f‖M2,γ(Ω) =

(
sup

Ωx,r,x∈Ω̄

1
r1+2γ

∫

Ωr

|f |2 dx

) 1
2

.

We note that M2,γ(Ω) contains L
5

2−γ (Ω).
The objective of this paper is to present a sufficient condition for

the regularity of suitable weak solutions to (1.1) near the boundary.
Suitable weak solutions will be defined in Definition 2.1 in next section.
Our main result is that the smallness of L

5
2−norm of the velocity field

near boundary implies regularity. Our main result reads as follows:

Theorem 1.3. Let u be a suitable weak solution of the steady-state
Navier-Stokes equation in Ω with force f ∈ M2,γ for some γ > 0. As-
sume further that Ω is a bounded domain with C2 boundary satisfying
Assumption 1.1. Suppose that x ∈ ∂Ω. There exists ε > 0 such that if

lim sup
r→0

1

r
5
2

∫

Ωx,r

|u| 52 dy < ε,

then u is regular at x.

Remark 1.4. It is an open question whether or not the regularity
criterion in Theorem 1.3 could be replaced by the following condition:

lim sup
r→0

1
r5−m

∫

Ωx,r

|u|m dy < ε, 1 ≤ m <
5
2
.

We present the proof of Theorem 1.3 in next section. Our regularity
criterion is also true in the interior, which will be shown in the Appendix.

2. Local boundary regularity

In this section we introduce the notations, define suitable weak solu-
tions, derive the equations (2.3) changed by flatting the boundary, and
finally present the proof of Theorem 1.3. We begin with some notations.
Let Ω be a bounded domain in R5. We denote by C = C(α, β, ...) a con-
stant depending on the prescribed quantities α, β, ..., which may change
from line to line. For 1 ≤ q ≤ ∞, W k,q(Ω) denotes the usual Sobolev
space, i.e., W k,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ k}. We
write the average of f on E as �

∫
E f , that is �

∫
E f =

∫
E f/ |E|. Next we
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recall suitable weak solutions for the steady-state Navier-Stokes equa-
tions (1.1) in five dimensions (compare to e.g. [1] for three dimensional
case).

Definition 2.1. Let Ω ⊂ R5 be a bounded domain satisfying As-
sumption 1.1. Suppose that f belongs to the Morrey space M2,γ(Ω)
for some γ > 0. A pair (u, p) is suitable weak solution to (1.1) if the
following conditions are satisfied:

(a) The functions u : Ω → R5 and p : Ω → R satisfy u ∈ W 1,2
0 (Ω), p ∈

L
3
2 (Ω).

(b) u and p solve the Navier-Stokes equations in Ω in the sense of
distributions and u satisfies the boundary condition u = 0 on ∂Ω
in the trace sense.

(c) u and p satisfy the local energy inequality

(2.1)
∫

Ω
|∇u|2 φ ≤ 1

2

∫

Ω
|u|2 ∆φ +

∫

Ω

( |u|2
2

+ p

)
u · ∇φ +

∫

Ω
f · uφ,

where φ ∈ C∞
0 (R5) and φ ≥ 0.

Remark 2.2. The existence of suitable weak solutions is proved in
[1] (refer also to [12]) and Definition 2.1 for suitable weak solution for
steady case is analog to that of time dependent case. The main differ-
ence between suitable weak solutions and weak solutions (compare to [2,
p.779]) is the additional condition of the local energy inequality (2.1).
It is an open question if all weak solutions are suitable.

Let x0 ∈ ∂Ω. Under Assumption 1.1, we can represent Ωx0,r0 =
Ω ∩ Bx0,r0 = {y = (y′, y5) ∈ Bx0,r0 : y5 > ϕ(y′)}, where ϕ is the graph
of C2 in Assumption 1.1. Flatting the boundary near x0, we introduce
new coordinates x = ψ(y) by formulas

(2.2) x = ψ(y) ≡ (y1, y2, y3, y4, y5 − ϕ(y1, y2, y3, y4)) .

We note that the mapping y 7→ x = ψ(y) straightens out ∂Ω near x0

such that Ωx0,ρ, ρ < r0 is transformed onto a subdomain ψ(Ωx0,ρ) of
R5

+ ≡ {x ∈ R5 : x5 > 0}.
We define v = u ◦ ψ−1, π = p ◦ ψ−1 and g = f ◦ ψ−1 in ψ(Ωx0,ρ).

Then using the change of variables (2.2), the equations (1.1) result in
the following for v and π:




−∆̂v + (v · ∇̂)v + ∇̂π = g in ψ(Ωx0,ρ),

∇̂ · v = 0 in ψ(Ωx0,ρ),
v = 0 on ∂ψ(Ωx0,ρ) ∩ {x5 = 0},

(2.3)
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where ∇̂ and ∆̂ are differential operators with variable coefficients de-
fined by

∇̂ = (∂x1 − ϕx1∂x5 , ∂x2 − ϕx2∂x5 , ∂x3 − ϕx3∂x5 , ∂x4 − ϕx4∂x5 , ∂x5),

∆̂ = aij(x)∂2
xi,xj

+ bi(x)∂xi ,

(2.4)

where aij and bi are given as

aij(x) = δij , ai5(x) = a5i(x) = −ϕxi , bi(x) = 0, i = 1, 2, 3, 4,

and

a55(x) = 1 +
4∑

i=1

(ϕxi)
2, b5(x) = −

4∑

i=1

ϕxixi .

As mentioned in Remark 1.2, if we take a sufficiently small r1 with
r1 < r0, then (1.2) holds for any r < r1. In addition, we note that

(2.5)
1
2
|∇v(x, t)| ≤

∣∣∣∇̂v(x, t)
∣∣∣ ≤ 2 |∇v(x, t)| for all x ∈ ψ(Ωx0,ρ)

and
(2.6)
B+

ψ(x0), r
2
⊂ ψ(Ωx0,r) ⊂ B+

ψ(x0),2r, ψ−1(B+
ψ(x0), r

2
) ⊂ Ωx0,r ⊂ ψ−1(B+

ψ(x0),2r),

where B+
x,r indicates {y ∈ R5

+ : |y − x| < r}.
From now on, we fix x0 = 0 without loss of generality. We suppose

that, as above, ψ is a coordinate transformation so that v, π satisfies
(2.3) in ψ(Ωr0).

Remark 2.3. Due to the suitability of u, p (see Definition 2.1), (v, π)
solve (2.3) in a weak sense and satisfies the following local energy inequal-
ity: There exists r2 with r2 < r0 where r0 is the number in Assumption
1.1 such that
(2.7)∫

ψ(Ωr0 )

∣∣∣∇̂v
∣∣∣
2
ξ ≤ C

∫

ψ(Ωr0)

(
|v|2

∣∣∣∆̂ξ
∣∣∣ + (|v|3 + |π| 32 )

∣∣∣∇̂ξ
∣∣∣ + |g · v| |ξ|

)
,

where ξ ∈ C∞
0 (Br) with r < r2 and ξ ≥ 0, and ∇̂ and ∆̂ are differential

operators in (2.4).

Next we define some scaling invariant functionals, which are useful
for our purpose. Let B+

r = Br ∩ {x ∈ R5 : x5 > 0}. Let r0 and r1 be
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the numbers in Assumption 1.1 and Remark 1.2, respectively. For any
r < r1 and for a suitable weak solution (u, p) of (1.1) we introduce

E(r) :=
1
r

∫

Ωr

|∇u(y)|2dy, A(r) :=
1
r2

∫

Ωr

|u(y)|3dy,

K(r) :=
1

r
5
2

∫

Ωr

|u(y)| 52 dy, Q(r) :=
1
r2

∫

Ωr

|p(y)| 32 dy.

For a weak solution (v, π) and B+
r ⊂ ψ(Ωr1), we introduce

Ê(r) :=
1
r

∫

B+
r

|∇̂v(y)|2dy, Â(r) :=
1
r2

∫

B+
r

|v(y)|3dy,

K̂(r) :=
1

r
5
2

∫

B+
r

|v(y)| 52 dy, Q̂(r) :=
1
r2

∫

B+
r

|π(y)| 32 dy.

Next lemma shows relations between scaling invariant quantities above.

Lemma 2.4. Let Ω be a bounded domain satisfying Assumption 1.1
and x0 ∈ ∂Ω. Suppose that (u, p) and (v, π) are suitable weak solutions
of (1.1) in Ω ⊂ R5 and (2.3) in ψ(Ωx0) ⊂ R5

+, respectively, where ψ is
the mapping flatting the boundary in the Assumption 1.1. Then there
exist sufficiently small r1 and C = C(r1) such that for any 4r < r1 the
followings are satisfied:

1
C

E(r) ≤ Ê(2r) ≤ CE(4r),
1
C

A(r) ≤ Â(2r) ≤ CA(4r),

1
C

K(r) ≤ K̂(2r) ≤ CK(4r),
1
C

Q(r) ≤ Q̂(2r) ≤ CQ(4r),

Proof. We just show one of above estimates, since others follows sim-
ilar arguments. As indicated earlier, we take a sufficiently small r1 such
that (1.2), (2.5) and (2.6) hold. Then

E(r) ≤ C

r

∫

ψ(Ωr)
|∇v|2 ≤ C

r

∫

ψ(Ωr)

∣∣∣∇̂v
∣∣∣
2
≤ C

2r

∫

B+
2r

∣∣∣∇̂v
∣∣∣
2

= CÊ(2r).

On the other hand,

Ê(2r) ≤ 1
2r

∫

B+
2r

|∇v|2 ≤ C

r

∫

ψ−1(B+
2r)
|∇u|2 ≤ C

4r

∫

Ω4r

|∇u|2 = CE(4r).

This completes the proof.

Remark 2.5. We can also show that f and g have relations as in
Lemma 2.4. To be more precise, for 1 ≤ m < ∞∫

Ωr

|f |m ≤ C

∫

ψ(Ωr)
|g|m ≤ C

∫

B+
2r

|g|m ,
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∫

B+
r

|g|m ≤ C

∫

ψ−1(B+
r )
|f |m ≤ C

∫

Ω2r

|f |m .

Therefore, it is direct that ‖g‖M2,γ(B+
r ) ≤ C ‖f‖M2,γ(Ω).

From now on, for simplicity, we denote ‖f‖M2,γ
= mγ . Next we show

the local regularity criterion for v near the boundary.

Lemma 2.6. Let Ω be a bounded domain satisfying the Assumption
1.1 and x0 ∈ ∂Ω. Suppose that (u, p) and (v, π) are suitable weak
solutions of (1.1) in Ω ⊂ R5 and (2.3) in ψ(Ωx0) ⊂ R5

+, respectively,
where ψ is the mapping flatting the boundary in the Assumption 1.1.
Let x = ψ(x0). Assume further that g ∈ M2,γ for some γ ∈ (0, 2]. Then

there exist ε > 0 and r∗ depending on γ, ‖g‖M2,γ
such that if Â

1
3 (r) < ε

for some r < r∗, then x is a regular point.

Before giving the proof of Lemma 2.6, we first control the pressure in
terms of velocity field, which will be used in the proof of Lemma 2.6.

Lemma 2.7. Under the assumption in Lemma 2.6, there exists r∗
such that for any r and ρ with 16r < ρ < r∗

Q̂(r) ≤ C(
ρ

r
)2

(
Â(ρ) + ρ

3γ
2 m

3
2
γ

)
.

Proof. Let r∗ be sufficiently small such that (1.2), (2.5) and (2.6) hold.
Due to the estimate of pressure for the Stokes system in [9, Theorem
3.7], we know

Q(2r) ≤ C

(
A(4r) +

1
r2

∫

Ω4r

|f | 32
)
≤ C

r2

(
Â(8r) +

∫

B+
8r

|g| 32
)

.

Combining the above estimate and Lemma 2.4, we obtain

Q̂(r) ≤ CQ(2r) ≤ C

r2

(
Â(8r) +

∫

B+
8r

|g| 32
)

≤ C(
ρ

r
)2Â(ρ) + C(

ρ

r
)2

(
ρ−1

∫

B+
ρ

|g|2
) 3

4

.

Recalling observations in Remark 2.5, we deduce the lemma. This com-
pletes the proof.

The proof of Lemma 2.6 is based on the following decay estimate of
v in a Lebesgue spaces.
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Lemma 2.8. Let 0 < θ < 1
2 and β ∈ (0, γ). Under the assumption in

Lemma 2.6, there exist ε1 > 0 and r∗ depending on θ, γ, β and mγ such

that if Â
1
3 (r) + ‖g‖Mγ

rβ+1 < ε1 for some r ∈ (0, r∗), then

Â
1
3 (θr) < Cθ1+α

(
Â

1
3 (r) + mγrβ+1

)
,

where 0 < α < 1 and C is a constant.

Proof. Suppose the statement is not true. Then for any α ∈ (0, 1),
θ ∈ (0, 1

2), and C > 0, there exist xn ↘ 0, rn ↘ 0 and εn ↘ 0 such that
Â

1
3 (rn) + ‖gn‖Mγ

rβ+1
n = εn, but Â

1
3 (θrn) > Cθ1+α(Â

1
3 (rn) + mγrβ+1

n ).
Let y = r−1

n (x−xn) and we define wn,qn and hn by wn(y) := ε−1
n rnvn(x),

qn(y) := ε−1
n r2

nπn(x) and hn(y) := ε−1
n r3

ngn(x) respectively. For conve-
nience we denote Â(wn, θ) := 1

θ

∫
B+

1
|wn|3dy and Mn

γ := ‖hn‖M2,γ . The
change of variables leads to

(2.8) Â
1
3 (wn, 1) + Mn

γ rβ−γ
n = 1 and Â

1
3 (wn, θ) ≥ Cθ1+α.

On the other hand, wn, qn solve the following system in a weak sense:
{
−∆̂wn + εn(wn · ∇̂)wn + ∇̂qn = hn, div wn = 0 in B+

1
wn = 0 on B1 ∩ {x5 = 0}.

Due to (2.8) and Lemma 2.7, we have following weak convergence (pos-
sible subsequences of wn and qn should be taken and we, however, use
the same symbol for simplicity):

wn ⇀ w in L3(B+
1 ), qn ⇀ q in L

3
2 (B+

3
4

),

‖hn‖L 3
2
≤ ε−1

n Mn
γ r1+γ

n = ε−1
n Mn

γ rβ+1
n rγ−β

n ≤ rγ−β
n −→ 0 as n −→∞.

Next we show that ∇̂wn is uniformly bounded in L2(B+
1
2

). Let ξ be a

standard cut off function satisfying ξ = 1 on B 1
2

and ξ = 0 on R5 \B 3
4
.

Recalling the local energy inequality,
∫

B+
1

|∇̂wn|2ξdy ≤ C

∫

B+
1

|wn|2
∣∣∣∆̂ξ

∣∣∣ dy +
∫

B+
1

(
|wn|3 + |qnwn|

) ∣∣∣∇̂ξ
∣∣∣

+
∫

B+
1

|hn · sn||ξ|dy,

we have following weak convergence; wn ⇀ w in W 1,2(B+
3
4

). Thus, by

the compactness theorem, we have strong convergence of wn to w in
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L3(B+
1
2

), namely

(2.9) wn → w in L3(B+
1
2

).

Combining (2.9) and Â
1
3 (wn, θ) > Cθ1+α, we obtain

(2.10)

(
1
θ2

∫

B+
θ

|w|3dy

) 1
3

≥ Cθ1+α.

We note that w and q solve the following Stokes system in a weak sense:

−∆w +∇q = 0, div w = 0 in B+
3
4

, w = 0 on {x5 = 0} ∩B 3
4
.

Since w is regular in B+
1
2

, we obtain

Â
1
3 (w) =

(
1
θ2

∫

B+
θ

|w|3dy

) 1
3

≤ C1θ
2,

where C is absolute constant. At the beginning, we take θ ∈ (0, 1
2)

such that C1θ
2 ≤ C

2 θ1+α, where C is the constant in (2.10). This
leads, due to (2.10) and the choice of θ, to a contradiction, because
Cθ1+α ≤ lim inf Â

1
3 (wn, θ) = Â

1
3 (w, θ) = C1θ

2 ≤ C
2 θ1+α. This com-

pletes the proof.

Since the Lemma 2.8 is the crucial part of the proof of Lemma 2.6,
we present only a brief sketch of the streamline of Lemma 2.6
The sketch of the proof of Lemma 2.6 We note that due to the
Lemma 2.8 there exists a positive constant α1 < 1 such that

Â
1
3 (r) < Cθ1+α1

(
Â

1
3 (ρ) + mγrβ+1

)
, r < ρ < r1,

where r1 is the number in Lemma 2.6. We consider for any x ∈ B+
r1/2

and for any r < r1/4

Âa(r) =
1
r2

∫

B+
x

|v(y)− (v)a|3 dy, (v)a = �
∫

B+
x

v(y)dy.

We can then show that Â
1
3
a (r) ≤ Cr1+α1 , where C is an absolute constant

independent of v. This can be proved by simple computations and the
details are omitted. Hölder continuity of v is a direct consequence of this
estimate, which immediately implies that u is also Hölder continuous
locally near boundary. This completes the proof.
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In next lemma we estimate the scaled L3−norm of suitable weak
solutions.

Lemma 2.9. Let r∗ be the number in Lemma 2.6. Under the same
assumption as in Lemma 2.6, for any r < r1

(2.11) Â(r) ≤ CÊ(r)K̂
2
5 (r).

Proof. This is due to the Hölder and Poincaré’s inequality. Indeed,
as before, taking a sufficiently small r1 such that (2.5) holds, we have

‖v‖3
L3(B+

r )
≤ C ‖∇v‖2

L2(B+
r )
‖v‖

L
5
2 (B+

r )
≤ C

∥∥∥∇̂v
∥∥∥

2

L2(B+
r )
‖v‖

L
5
2 (B+

r )
.

We deduce (2.11) by diving both sides by r2. This completes the proof.

Now we are ready to present the proof of Theorem 1.3.
The proof of Theorem 1.3 Let r̂ be sufficiently small such that
(1.2), (2.5) and (2.6) hold and we will specify r̂ later. We assume that
16r < ρ < r̂. By Lemma 2.7 and Lemma 2.9, we have for 16r < ρ

Â(r) ≤ CÊ(r)K̂
2
5 (r)

≤ C
[
Â

2
3 (2r) + Â(2r) + Q̂(2r) + mγÂ

2
3 (2r)r

3γ
2

]
K̂

2
5 (r)

≤ C
[
Â(2r) + Q̂(2r) + 1 + m3

γr
9γ
2

]
K̂

2
5 (r)

≤ C(
ρ

r
)2K̂

2
5 (r)Â(ρ) + C(

ρ

r
)2m

3
2
γ ρ

3γ
2 K̂

2
5 (r) + C

[
1 + m3

γr
9γ
2

]
K̂

2
5 (r).

Choosing θ ∈ (0, 1
4) and replacing r and ρ by θr and r, respectively, we

obtain
(2.12)

Â(θr) ≤ C

θ2
K̂

2
5 (θr)Â(r)+

C

θ2
m

3
2
γ r

3γ
2 K̂

2
5 (θr)+C

[
1 + m3

γ(θr)
9γ
2

]
K̂

2
5 (θr).

Now we fix r̂ < min{1, (1 + mγ)−
1
γ , (1 + mγ)−

2
3γ , r∗}, where r∗ is the

number in Lemma 2.6 such that for all r ≤ r̂

K̂(r) < min

{(
θ2

2C

) 5
2

,

(
θ2ε

8C

) 5
2

}
,

where C is the constant in (2.12) and ε is the number in Lemma 2.6.
Therefore,

Â(θr) ≤ 1
2
Â(r) +

ε

4
.
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By iteration, we obtain

Â(θkr) ≤ 1
2k

Â(r) +
ε

2
, 4r < r1.

Thus, for k sufficiently large, Â(θkr) < ε, which implies that x is a
regular point due to Lemma 2.6. This completes the proof.

Appendix

In this appendix we show that Theorem 1.3 is also valid in the in-
terior case. Although interior case is simpler than the boundary case,
we present a sketch of procedures since slight different arguments are
required compared to the boundary case. From now on x is assumed
to be an interior point and Bx,r ⊂ Ω. We introduce a scaling invariant
functional Aa(r) defined by

Aa(r) :=
1
r2

∫

Bx,r

|u(y)− (u)r|3 dy, (u)r := �
∫

Bx,r

u(y)dy.

In the case of interior, we need similar decay estimates comparable to
Lemma 2.6 as in boundary case.

Lemma 2.10. Let 0 < θ < 1
2 , β ∈ (0, γ) and x ∈ Ω be an interior

point. There exist ε1 > 0, r1, and M depending on θ, γ, β such that
if u is a suitable weak solution of Navier-Stokes equations satisfying
Definition 2.1 and if Âa(r) + ‖g‖Mrr

β+1 < ε1 and |r(u)r| < M for some
r ∈ (0, r1), then

A
1
3
a (θr) < Cθ1+α

(
A

1
3
a (r) + mγrβ+1

)
,

where 0 < α < 1 and C is a constant.

Proof. We assume f = 0 for simplicity. Suppose the statement is not
true. Then for any α ∈ (0, 1) and C > 0, there exist xn, rn ↘ 0 and εn ↘
0 such that A

1
3
a (rn) = εn and rn(u)rn < M but A

1
3
a (θrn) ≥ Cθ1+αεn.

Using the change of variables y = r−1(x−xn), we set vn(y) := ε−1
n rnu(x)

and qn = ε−1
n r2

n(p(x) − (p)rn). The standard blow-up procedure and
compactness result lead to a contradiction as in Lemma 2.6. Since the
arguments are just repetitions of the boundary case, the details are
skipped.

Next lemma is straightforward due to Lemma 2.10, and thus its de-
tails are omitted.
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Lemma 2.11. Let x ∈ Ω be an interior point. There exist a constant
ε > 0 depending on γ, mγ and r∗ > 0 such that if u is a suitable weak
solution of the Navier-Stokes equations satisfying Definition 2.1 and if

A
1
3 (r) < ε for some r < r∗, then x is a regular point.

With modifications above, we can have the same regularity criterion
in the interior as in boundary case. Since its verification can be done
by following procedures similar to those of boundary case, we skip the
details.

Theorem 2.12. The same statement of Theorem 1.3 remains true
when x ∈ Ω is an interior point with Ωx,r replaced by Bx,r.
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[8] E. Hopf, Über die Anfangswertaufgabe fur die hydrodynamischen
Gründgleichungen, Math. Nachr. 4 (1950), 213–231.

[9] K. Kang, On regularity of stationary Stokes and Navier-Stokes equations near
boundary J. Math. Fluid Mech. 6 (2004), no. 1, 78–101.

[10] J. Leray, Etude de diverses equations integrales non lineaires et de quelques
problemes que pose l’hydrodynamique J. Math. Pures Appl. 12 (1933), 1–82.

[11] J. Leray, Essai sur le mouvement d’un fluide visqueux emplissant l’espace, Acta
Math. 63 (1934), 193–248.

[12] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Commun.
Math. Phys. 55 (1977), 97–112.

[13] G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes
equations near the boundary, J. Math. Fluid Mech. 4 (2002), no. 1, 1–29.



Local regularity near boundary in five dimensions 569

[14] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm.
Pure Appl. Math. 41 (1988), 437–458.

*
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Republic of Korea
E-mail : baseballer@skku.edu

**
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Republic of Korea
E-mail : berilac@skku.edu


