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SEVERAL RESULTS ASSOCIATED WITH
THE RIEMANN ZETA FUNCTION
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Abstract. In 1859, Bernhard Riemann, in his epoch-making mem-
oir, extended the Euler zeta function ζ(s) (s > 1, s ∈ R) to the
Riemann zeta function ζ(s) (<(s) > 1, s ∈ C) to investigate the
pattern of the primes. Sine the time of Euler and then Riemann, the
Riemann zeta function ζ(s) has involved and appeared in a variety
of mathematical research subjects as well as the function itself has
been being broadly and deeply researched. Among those things,
we choose to make a further investigation of the following subjects:
Evaluation of ζ(2k) (k ∈ N); Approximate functional equations for
ζ(s); Series involving the Riemann zeta function.

1. Introduction and Preliminaries

We begin by recalling the definition of the Riemann zeta function
ζ(s):

ζ(s) :=





∞∑

n=1

1
ns

=
1

1− 2−s

∞∑

n=1

1
(2n− 1)s

(Re(s) > 1)

(
1− 21−s

)−1
∞∑

n=1

(−1)n−1

ns
(Re(s) > 0; s 6= 1).

(1.1)

This function ζ(s) has played an important role in the analytic num-
ber theory since Bernhard Riemann’s epoch-making paper [15] entitled
by Über die Anzahl der Primzahlen unter einer gegebenen Grösse (On
the Number of Primes Less Than a Given Magnitude) whose an Eng-
lish translation is given in the Appendix of Edwards’s book [10]. The
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Hurwitz (or generalized) zeta function ζ(s, a) is defined by

ζ(s, a) :=
∞∑

k=0

(k + a)−s

(Re(s) > 1, a 6∈ Z−0 := {0, −1, −2, . . .}),
(1.2)

which, upon setting a = 1, yields the Riemann zeta function (1.1). It is
noted that both of the Riemann zeta function ζ(s) and the Hurwitz zeta
function ζ(s, a) can be continued meromorphically to the whole s-plane
except for a simple pole only at s = 1 with their respective residue 1, in
various ways.

The Riemann zeta function ζ(s) itself has been being broadly and
deeply investigated. Moreover the function ζ(s) has involved and ap-
peared in a variety of mathematical research subjects. For example,

(1.3)
∞∑

n=1

Hn

(n + 1)2
= 1

2

∞∑

n=1

Hn

n2
= ζ(3),

where Hn := H
(1)
n denotes the harmonic numbers and H

(s)
n denotes the

generalized harmonic numbers defined by

(1.4) H(s)
n :=

n∑

k=1

1
ks

(n ∈ N := {1, 2, 3, . . .}; s ∈ C).

Since the identity (1.3) was discovered by Euler in 1775 and has a long
history (see, for example, [2, p. 252 et seq.]), a remarkably wide vari-
ety of summations whose terms are associated with the harmonic and
generalized harmonic numbers has been evaluated, mainly, in terms of
the Riemann zeta function ζ(s), under the research subject called ex-
plicit evaluation of Euler sums (see [9]). Among those diverse research
subjects related to the Riemann zeta function ζ(s), we, here, are aim-
ing mainly at presenting our small observations regarding the following
subjects:

• Evaluation of ζ(2k) (k ∈ N);
• Approximate functional equations for ζ(s);
• Series involving the Riemann zeta function.

For our purpose, we recall the following functions and polynomials:
The Bernoulli polynomials Bn(x) are defined by the generating function:

(1.5)
z exz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
(|z| < 2π).
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The numbers Bn := Bn(0) are called the Bernoulli numbers generated
by

(1.6)
z

ez − 1
=

∞∑

n=0

Bn
zn

n!
(|z| < 2π).

The Bernoulli polynomials and numbers Bn(x) and Bn have many prop-
erties (see [19, Section 1.6]) three of which are recalled:

(1.7) Bn(1− x) = (−1)n Bn(x) (n ∈ N0 := N ∪ {0});

(1.8) ζ(−n, x) = −Bn+1(x)
n + 1

(n ∈ N0);

(1.9) ζ(−n) =





− 1
2

(n = 0)

− Bn+1

n + 1
(n ∈ N).

The polygamma functions ψ(n)(z) of order n (n ∈ N0) are defined by
(see [19, p. 22, Eq. (52)])

(1.10) ψ(n)(z) :=
dn+1

dzn+1
log Γ(z) =

dn

dzn
ψ(z) (n ∈ N0, z 6∈ Z−0 ),

where ψ(z) := ψ(0)(z) = Γ′(z)/Γ(z) is called the psi (or digamma) func-
tion, and Γ(z) is the well-known Gamma function.

2. Evaluation of ζ(2k) (k ∈ N)

The solution of the so-called Basler problem (cf., e.g., Spiess [17, p.
66]):

(2.1) ζ(2) =
∞∑

k=1

1
k2

=
π2

6

was first found in 1736 by Leonhard Euler (1707-1783), although Jakob
Bernoulli (1654-1705) and Johann Bernoulli (1667-1748) did their ut-
most to sum the series in (2.1). In fact, the former of these Bernoulli
brothers did not live to see the solution of the problem, and the solu-
tion became known to the latter soon after Euler found (see, for details,
Knopp [13, p. 238]).

Numerous interesting solutions of the problem of evaluating the Rie-
mann ζ(2k) (k ∈ N) have appeared in the mathematical literature ever
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since Euler first evaluated ζ(2). Here we recall two main formulas for
evaluation of ζ(2k) (k ∈ N) (see [19, p. 98]):

(2.2) ζ(2k) = (−1)k+1 (2π)2k

2 (2k)!
B2k (k ∈ N0 := N ∪ {0}),

where Bk are Bernoulli numbers (see [19, Section 1.6]) which enables us
to list the following special values:

(2.3) ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, ζ(10) =

π10

93555
, . . . ;

(2.4) ζ(2k) =
2

2k + 1

k−1∑

j=1

ζ(2j)ζ(2k − 2j) (k ∈ N \ {1}),

which can also be used to evaluate ζ(2k) (k ∈ N \ {1}) by starting with
(2.1).

Don Zagier [21] described a short outline of an elementary proof of
an equivalent form of (2.4):

(2.5)
∑

0<j<k
j even

ζ(j) ζ(k − j) =
k + 1

2
ζ(k) (k ∈ N, k ≥ 4 even).

Here we give a rather detailed proof of (2.5) by complementing that of
Zagier’s. Indeed, we prove

(2.6) fk(m, n)− fk(m + n, n)− fk(m,m + n) =
∑

0<j<k
j even

1
mj nk−j

,

where fk(m,n) is defined by

fk(m,n) :=
1

m · nk−1
+

1
2

k−2∑

r=2

1
mr nk−r

+
1

mk−1 n
.

The proof is proceeded by induction on k. Starting with k = 4, it can
be directly checked

f4(m,n)− f4(m + n, n)− f4(m,m + n) =
1

m2 n2
,
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which, upon summing over all integers m, n > 0, yields

ζ(2)2 =


 ∑

m, n>0

−
∑

m>n>0

−
∑

n>m>0


 f4(m, n)

=
∑

n>0

f4(n, n) =
5
2

ζ(4).

Thus the formula (2.1) gives ζ(4) in (2.3). For convenience, let

Im,n(k) := fk(m,n)− fk(m + n, n)− fk(m,m + n).

Then it is found that

Im,n(k) =
∑

0<j<k
j even

1
mj nk−j

+Am,n(k),

where

Am,n(k) : =
1
2

k−2∑

j=2
j even

1
mj nk−j

− 1
2

k−2∑

j=2
j odd

1
mj nk−j

− 1
m · n · (m + n)k−2

− 1
2

k−2∑

r=2

mr + nr

mr nr (m + n)k−r
.

Now it is sufficient to show that Am,n(k) = 0 for all even k ∈ N, k ≥ 4,
or, equivalently,

(2.7) Pm,n(k) = Qm,n(k) (k ∈ N, k ≥ 4 even),

where

Pm,n(k) :=
k−2∑

j=2
j even

1
mj nk−j

−
k−2∑

j=2
j odd

1
mj nk−j

and

Qm,n(k) :=
2

m · n · (m + n)k−2
+

k−2∑

r=2

mr + nr

mr nr (m + n)k−r
.

When k = 4 is already checked. Assume that (2.7) holds true for some
even k ∈ N, k ≥ 4. We have

Pm,n(k + 2) =
k∑

j=2
j even

1
mj nk+2−j

−
k∑

j=2
j odd

1
mj nk+2−j

,
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which, upon j − 2 = j′ and then dropping the prime on j, becomes

Pm,n(k + 2) =
k−2∑

j=0
j even

1
mj+2 nk−j

−
k−2∑

j=0
j odd

1
mj+2 nk−j

=
1

m2




k−2∑

j=0
j even

1
mj nk−j

−
k−2∑

j=0
j odd

1
mj nk−j




=
1

m2





(
1
nk
− 1

m · nk−1

)
+

k−2∑

j=2
j even

1
mj nk−j

−
k−2∑

j=2
j odd

1
mj nk−j





.

By induction hypothesis, we, therefore, get

Pm,n(k + 2)

=
1

m2

{(
1
nk
− 1

m · nk−1

)
+

2
m · n · (m + n)k−2

+
k−2∑

r=2

mr + nr

mrnr(m + n)k−r

}
,

which, upon summing the finite geometric series, gives

Pm,n(k + 2)

=
1

m2

{(
1
nk
− 1

m · nk−1

)
+

1
m · nk−2 · (m + n)

+
1

n ·mk−2 · (m + n)

}

=
1

m · nk · (m + n)
+

1
n ·mk · (m + n)

.

Similarly it can be shown that

Qm,n(k + 2) =
2

m · n · (m + n)k
+

k∑

r=2

mr + nr

mr nr (m + n)k+2−r

=
1

m · nk · (m + n)
+

1
n ·mk · (m + n)

.

We thus have Pm,n(k + 2) = Qm,n(k + 2). So, by the principle of math-
ematical induction, (2.7) (and (2.6)) holds for all even k ∈ N, k ≥ 4.
Summing over all integers m, n > 0 in (2.6), we finally proves the de-
sired formula (2.5).
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3. Approximate Functional Equations for ζ(s)

There are a lot of practical situations which are necessary to deal
with approximate functional equations for ζ(s). Many authors have
been concerned to establish certain approximation formulas for ζ(s) to
use them according to their respective necessities. For example, we recall
an interesting formula with the error term given by a contour integral
[12, p. 99]:

(3.1) ζ(s) =
m∑

n=1

n−s +
e−πis Γ(1− s)

2πi

∫

C

zs−1 e−m z

ez − 1
dz,

where the contour C is essentially a Hankel’s loop (cf., e.g., Whittaker
and Watson [20, p. 245]), which starts from ∞ along the upper side of
the positive real axis, encircles the origin once in the positive (counter-
clockwise) direction, excluding the points ±2kπi (k ∈ N), and then
returns to ∞ along the lower side of the positive real axis, as in Figure
1.

Figure 1

Among other approximate functional equations for ζ(s), we refer to
another deeper formula due to Riemann and Siegel (see [12, Eq. (4.3),
pp. 98–99]).

In view of the principle of deformation of paths (see [4, p. 159]), the
loop C can be composed of three parts C1, C2, and C3, where C2 is a
positively-oriented circle of radius δ (0 < δ < 2π) about the origin, and
C1 and C3 are the upper and lower edges of a cut in the complex z-plane
along the positive real axis, traversed as described above, as in Figure
2:

It is interesting to observe that a well-known formula can be obtained
from (3.1). If s is any integer in (3.1), the integrand in the contour
integral in (3.1) takes the same values on both C1 and C3 with opposite
signs, and hence the integrals along C1 and C3 cancel. So, setting s = −k
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Figure 2

(k ∈ N) in (3.1) gives

ζ(−k) =
m∑

n=1

nk +
eπik Γ(1 + k)

2πi

∫

C2

z−k−1 e−m z

ez − 1
dz

=
m∑

n=1

nk + (−1)k k! Res
z=0

f(z),

where, for convenience,

f(z) :=
z−k−1 e−m z

ez − 1
= z−k−2 z e−m z

ez − 1
.

By virtue of (1.5), it is seen that

Res
z=0

f(z) =
Bk+1(−m)
(k + 1)!

.

we, thus, obtain an interesting formula

(3.2)
m∑

n=1

nk = ζ(−k)− (−1)k

k + 1
Bk+1(−m) (m ∈ N, k ∈ N).

If (1.7) and (1.9) is used in (3.2), a well-known desired formula equivalent
to (3.2) is seen to be yielded (see [19, Eq.(17), p. 60]):

(3.3)
m∑

n=1

nk =
Bk+1(m + 1)−Bk+1

k + 1
(m ∈ N, k ∈ N).

The Bernoulli numbers are named after Jakob Bernoulli, who men-
tioned the numbers in his posthumous Ars conjectandi (see [3]). He
discussed sums of equal powers of the first m integers in (3.3). The
Bernoulli numbers appears in practically every field of mathematics,
particularly, in combinatorial theory, finite difference calculus, numeri-
cal analysis, analytic number theory, and probability theory.
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By using the Euler-Maclaurin summation formula: (cf. Hardy [11, p.
318]):

(3.4)
n∑

k=1

f(k) ∼ C0 +
∫ n

a
f(x) dx +

1
2

f(n) +
∞∑

r=1

B2r

(2r)!
f (2r−1)(n),

where C0 is an arbitrary constant to be determined in each special case
and Br are the Bernoulli numbers in (1.6), we can obtain a number of
analytical representations of ζ(s), such as (cf. Hardy [11, p. 333])

(3.5) ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s

}
(<(s) > −1),

(3.6)

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s +

1
12

sn−s−1

}
(<(s) > −3),

and

(3.7)
ζ(s) = lim

n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s +

1
12

sn−s−1

− 1
720

s(s + 1)(s + 2)n−s−3

}
(<(s) > −5).

Choi and Srivastava [8] (see also [19, p. 99–100]) used (3.6) and (3.7)
to express mathematical constants B and C (which arise naturally in
the study of multiple Gamma functions) defined by

(3.8)
log B = lim

n→∞

{
n∑

k=1

k2 log k −
(

n3

3
+

n2

2
+

n

6

)
log n +

n3

9
− n

12

}

∼= 0.03052113 . . .

and
(3.9)

log C = lim
n→∞

{
n∑

k=1

k3 log k −
(

n4

4
+

n3

2
+

n2

4
− 1

120

)
log n +

n4

16
− n2

12

}

∼= −0.02065438 . . .

in terms of the Riemann zeta function ζ(s) as follows:

(3.10) log B = −ζ ′(−2) and log C = −ζ ′(−2)− 11
720

.
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An application of Euler-Maclaurin summation formula (3.4) is made
for the function

f(x) = x−s (x > 0) and a = 1

to yield

(3.11)

n∑

k=1

k−s ∼ C(s) +
n1−s

1− s
+

1
s− 1

+
1
2

n−s

−
m∑

r=1

B2r

(2r)!
(s)2r−1 n−s−2r+1 +R(s; m, n) (n →∞),

where (s)r := Γ(s + r)/Γ(s) (r ∈ N0) is the Pochhammer symbol and
C(s) is a constant to be determined.

In order to determine the constant C(s) in (3.11), it is assumed that
<(s) > 1 and

(3.12) C(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s − 1
1− s

}
= ζ(s) +

1
1− s

.

From (3.11) and (3.12) we obtain a general asymptotic formula for ζ(s):
(3.13)

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2ns
+

m∑

r=1

B2r

(2r)!
(s)2r−1 n−s−2r+1

}

(m ∈ N, <(s) > −2m− 1, s 6= 1; m = 0, <(s) > 1)

It is noted that formulas (3.5)–(3.7) are obvious special cases of the
formula (3.13).

4. Series involving the Riemann Zeta function ζ(s)

A classical (about three centuries old) theorem of Christian Goldbach
(1690–1764), which was stated in a letter dated 1729 from Goldbach to
Daniel Bernoulli (1700–1782), was revived in 1986 by Shallit and Zikan
[16] as the following problem:

(4.1)
∑

ω∈S
(ω − 1)−1 = 1,

where S denotes the set of all nontrivial integer kth powers, that is,

(4.2) S :=
{

nk | n, k ∈ N \ {1}
}

.
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In terms of the Riemann Zeta function ζ(s) defined by (1.1), Gold-
bach’s theorem (4.1) assumes the elegant form (cf. Shallit and Zikan
[16, p. 403]):

(4.3)
∞∑

k=2

{ζ(k)− 1} = 1

or, equivalently,

(4.4)
∞∑

k=2

F (ζ(k)) = 1,

where F(x) := x− [x] denotes the fractional part of x ∈ R. As a matter
of fact, it is fairly straightforward to observe also that

(4.5)
∞∑

k=2

(−1)k F (ζ(k)) =
1
2
,

(4.6)
∞∑

k=1

F (ζ(2k)) =
3
4
, and

∞∑

k=1

F (ζ(2k + 1)) =
1
4
.

The research subject of evaluating series such as (4.3)–(4.6) is re-
ferred to as closed-form evaluation of series involving the Riemann zeta
function ζ(s) (or several other generalized zeta functions). This subject
has been studied by many authors who have used a variety of methods
and techniques (see, e.g., [19, Chapter 3], [18], [7], [8]). Here we present
more closed-form evaluation formulas by making use of known formulas.

Choi and Cvijović (see [5, Theorem 1]) proved a formula for ψ(n)(z)
at rational arguments z: In terms of the Bernoulli polynomials Bn(x)
(see [19, Section 1.6]) and the generalized zeta functions ζ(s, a), they
have:

(4.7)

ψ(n)

(
p

q

)
= (−1)n+1 n! qn

·
q−1∑

s=0

{
En(s; p ; q) (−1)1+b 1

2
(n+1)c (2π)n+1

2 · (n + 1)!
Bn+1

(
s

q

)

+
1

qn+1
Fn(s; p ; q)

q∑

k=1

ζ

(
n + 1,

k

q

)
En+1(k; s ; q)

}

(p, q, n ∈ N; 1 ≤ p < q),
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where bxc denotes the greatest integer ≤ x, and

En(s; p ; q) :=
1 + (−1)n

2
sin

(
2πsp

q

)
+

1− (−1)n

2
cos

(
2πsp

q

)

and

Fn(s; p ; q) :=
1 + (−1)n

2
cos

(
2πsp

q

)
+

1− (−1)n

2
sin

(
2πsp

q

)
.

By using a known formula for ψ(n)(z) (see [19, p. 22, Eq. (55)]) and
the series representation for cot z, we get the following formula

(4.8)

ψ(n)(z)− (−1)n ψ(n)(1− z) = −π
dn

dzn
{cot πz}

=
(−1)n+1 n!

zn+1
+ 2

∞∑

k=bn
2 c+1

(2k − n)n ζ(2k) z2k−n−1

(n ∈ N0; 0 < |z| < 1) .

It is interesting to compare (4.8) with Eq. (25) in [19, p. 155] (see also
Adamchik and Srivastava [1]).

Now we obtain the following results from (4.7) and (4.8): A closed-
form evaluation of the following classes of series involving the Riemann
zeta function ζ(s) is given:
(4.9)
∞∑

k=n+1

(2k − 2n)2n ζ(2k)
(

p

q

)2k−2n−1

=
(2n)!

2

(
q

p

)2n+1

+ (−1)n+1 (2π)2n+1

4

q−1∑

s=0

s2n sin
(

2πsp

q

)

+ (−1)n (2π)2n+1 q2n

2(2n + 1)

q−1∑

s=0

sin
(

2πsp

q

) n∑

j=0

(
2n + 1

2j

)
B2j

(
s

q

)2n+1−2j

(p, q, n ∈ N; 1 ≤ p < q)
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and
(4.10)
∞∑

k=n

(2k + 1− 2n)2n−1 ζ(2k)
(

p

q

)2k−2n

= −(2n− 1)!
2

(
q

p

)2n

+ (−1)n (2π)2n

4

q−1∑

s=0

s2n−1 cos
(

2πsp

q

)

+ (−1)n+1 (2π)2n q2n−1

4n

q−1∑

s=0

cos
(

2πsp

q

) n∑

j=0

(
2n

2j

)
B2j

(
s

q

)2n−2j

(p, q, n ∈ N; 1 ≤ p < q).
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