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ON PRIME AND SEMIPRIME RINGS WITH
SYMMETRIC n-DERIVATIONS

Kyoo-Hong Park*

Abstract. Let n ≥ 2 be a fixed positive integer and let R be a
noncommutative n!-torsion free semiprime ring. Suppose that there
exists a symmetric n-derivation ∆ : Rn → R such that the trace of
∆ is centralizing on R. Then the trace is commuting on R. If R is
a n!-torsion free prime ring and ∆ 6= 0 under the same condition.
Then R is commutative.

1. Introduction and preliminaries

Throughout this paper, R always represents an associative ring and
Z is its center. Let x, y, z ∈ R. We write the notation [y, x] for the
commutator yx − xy and make use of the identities [xy, z] = [x, z]y +
x[y, z] and [x, yz] = [x, y]z+y[x, z]. Recall that R is semiprime if aRa =
0 implies a = 0 and R is prime if aRb = 0 implies a = 0 or b = 0. A
map f : R → R is said to be commuting on R if [f(x), x] = 0 holds
for all x ∈ R. It is said that a map f : R → R is centralizing on R if
[f(x), x] ∈ Z is fulfilled for all x ∈ R. An additive map D : R → R
is called a derivation if the Leibniz rule D(xy) = D(x)y + xD(y) holds
for all x, y ∈ R. Let n ≥ 2 be a fixed positive integer and Rn =
R × R × · · · × R. A map ∆ : Rn → R is said to be symmetric (or
permuting) if the equation ∆(x1, x2, · · · , xn) = ∆(xπ(1), xπ(2), · · · , xπ(n))
holds for all xi ∈ R and for every permutation {π(1), π(2), · · · , π(n)}.
Let us consider the following map:

Let n ≥ 2 be a fixed positive integer. An n-additive map ∆ : Rn → R
(i.e., additive in each argument) will be called an n-derivation if the
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relations

∆(x1x
′
1, x2, · · · , xn) = ∆(x1, x2, · · · , xn)x

′
1 + x1∆(x

′
1, x2, · · · , xn),

∆(x1, x2x
′
2, · · · , xn) = ∆(x1, x2, · · · , xn)x

′
2 + x2∆(x1, x

′
2, · · · , xn),

...

∆(x1, x2, · · · , xnx
′
n) = ∆(x1, x2, · · · , xn)x

′
n + xn∆(x1, x2, · · · , x

′
n)

are valid for all xi, x
′
i ∈ R. Of course, an 1-derivation is a derivation

and a 2-derivation is called a bi-derivation. If ∆ is symmetric, then the
above equalities are equivalent to each other. In particular, in case when
n = 2, namely, ∆ is a symmetric bi-derivation on noncommutative 2-
torsion free prime rings, M. Brešar [1, Theorem 3.5] proved that ∆ = 0.

Let n ≥ 2 be a fixed positive integer. If R is commutative, then a
map ∆ : Rn → R defined by

(x1, x2, · · · , xn) 7→ D(x1)D(x2) · · ·D(xn)

for all xi ∈ R, i = 1, 2, · · · , n is a symmetric n-derivation, where D is a
derivation on R.

On the other hand, let

R =
{(

a b

0 0

)∣∣∣ a, b ∈ C
}

,

where C is a complex field. It is clear that R is a noncommutative
ring under matrix addition and matrix multiplication. We define a map
∆ : Rn → R by
((

a1 b1

0 0

)
,

(
a2 b2

0 0

)
, · · · ,

(
an bn

0 0

))
7→

(
0 a1a2 · · · an

0 0

)
.

Then it is easy to see that ∆ is a symmetric n-derivation.
Let n ≥ 2 be a fixed positive integer and let a map δ : R → R

defined by δ(x) = ∆(x1, x2, · · ·xn) for all x ∈ R, where ∆ : Rn → R is
a symmetric map, be the trace of ∆. It is obvious that, in case when
∆ : Rn → R is a symmetric map which is also n-additive, the trace δ of
∆ satisfies the relation

δ(x + y) = δ(x) + δ(y) +
n−1∑

k=1

nCk hk(x; y)
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for all x, y ∈ R, where nCk=
(
n
k

)
and

hk(x; y) = ∆(
n−k times︷ ︸︸ ︷

x, x, · · · , x,

k times︷ ︸︸ ︷
y, y, · · · , y).

Since we have
∆(0, x2, · · · , xn) = ∆(0 + 0, x2, · · · , xn)

= ∆(0, x2, · · · , xn) + ∆(0, x2, · · · , xn)

for all xi ∈ R, i = 2, 3, · · · , n, we obtain ∆(0, x2, · · · , xn) = 0 for all
xi ∈ R, i = 2, 3, · · · , n. Hence we get

0 = ∆(0, x2, · · · , xn)

= ∆(x1 − x1, x2, · · · , xn)

= ∆(x1, x2, · · · , xn) + ∆(−x1, x2, · · · , xn)

and so we see that ∆(−x1, x2, · · · , xn) = −∆(x1, x2, · · · , xn) for all xi ∈
R, i = 1, 2, · · · , n. This tells us that δ is an odd function if n is odd and
δ is an even function if n is even.

A study on the theory of centralizing (commuting) maps on prime
rings was initiated by the classical result of E.C. Posner [5] which states
that the existence of a nonzero centralizing derivation on a prime ring
R implies that R is commutative. Since then, a great deal of work in
this context has been done by a number of authors (see, e.g., [1] and ref-
erences therein). For example, as a study concerning centralizing (com-
muting) maps, J. Vukman [6, 7] investigated symmetric bi-derivations
on prime and semiprime rings. In [3], we obtained the similar results to
Posner’s and Vukman’s ones for permuting 3-derivations on prime and
semiprime rings. Our main purpose in this paper is to apply the result
due to E.C. Posner [5, Theorem 2] to symmetric n-derivations.

2. Results

We first precede the proof of our results by two well-known lemmas.

Lemma 2.1 ([4]). Let R be a prime ring. Let D : R → R be a
derivation and a ∈ R. If aD(x) = 0 holds for all x ∈ R, then we have
either a = 0 or D = 0.

Lemma 2.2 ([2]). Let n be a fixed positive integer and let R be a
n!-torsion free ring. Suppose that y1, y2, · · · , yn ∈ R satisfy λy1 +λ2y2 +
· · ·+ λnyn = 0 for λ = 1, 2, · · · , n. Then yi = 0 for all i.
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We start our investigation of symmetric n-derivations with the fol-
lowing result.

Theorem 2.3. Let n ≥ 2 be a fixed positive integer and let R be a
noncommutative n!-torsion free prime ring. Suppose that there exists
a symmetric n-derivation ∆ : Rn → R such that the trace δ of ∆ is
commuting on R. Then we have ∆ = 0.

Proof. Suppose that

(1) [δ(x), x] = 0

for all x ∈ R. Let λ (1 ≤ λ ≤ n) be any integer. Substituting x + λy for
x in (1) and using (1), we get

0 = λ
{
[δ(x), y] + nC1[h1(x; y), x]

}

+ λ2
{

nC1[h1(x; y), y] + nC2[h2(x; y), x]
}

(2)

+ · · ·+ λn
{
[δ(y), x] + nCn−1[hn−1(x; y), y]

}

for all x, y ∈ R. From Lemma 2.2 and (2), we infer that

(3) [δ(x), y] + n[h1(x; y), x] = 0

for all x, y ∈ R.
Let us write in (3) xy instead of y. Then we have

0 = [δ(x), xy] + n[h1(x; xy), x]

= x
{
[δ(x), y] + n[h1(x; y), x]

}
+ nδ(x)[y, x]

which implies that

(4) nδ(x)[y, x] = 0 = δ(x)[y, x]

for all x, y ∈ R. From (4) and Lemma 2.1, it follows that

δ(x) = 0

for all x ∈ R (x /∈ Z) since for any fixed x ∈ R, a map y 7→ [y, x] is a
derivation on R.

Now, let x ∈ R (x ∈ Z) and y ∈ R (y /∈ Z). Then y + λx /∈ Z. Thus
we obtain

0 = δ(y + λx) = δ(y) + λnδ(x) +
n−1∑

k=1

λk
nCk hk(y; x)

=
n−1∑

k=1

λk
nCk hk(y; x) + λnδ(x)



On prime and semiprime rings 455

for all x, y ∈ R and applying this relation to Lemma 2.2 yields

δ(x) = 0

for all x ∈ R (x ∈ Z). Therefore, we conclude that

(5) δ(x) = 0

for all x ∈ R.
For each k = 1, 2, · · · , n, let

Pk(x) = ∆(
k times︷ ︸︸ ︷

x, x, · · · , x, xk+1, xk+2, · · · , xn),

where x, xi ∈ R, i = k + 1, k + 2, · · · , n. Let µ (1 ≤ µ ≤ n − 1) be any
integer. By (5), the relation

0 = δ(µx + xn) = Pn(µx + xn)

= µnδ(x) + δ(xn) +
n−1∑

k=1

µk
nCk Pk(x)

=
n−1∑

k=1

µk
nCk Pk(x)

is true for all x, xn ∈ R, that is,

(6)
n−1∑

k=1

µk
nCk Pk(x) = 0

for all x ∈ R. Thus Lemma 2.1 and (6) give

nCn−1 Pn−1(x) = 0 = Pn−1(x)(7)

for all x ∈ R. Let ν (1 ≤ ν ≤ n− 2) be any integer. By (7), the relation

0 = Pn−1(νx + xn−1) = νn−1Pn−1(x) + Pn−1(xn−1) +
n−2∑

k=1

νk
nCk Pk(x)

holds for all x, xn−1 ∈ R and hence we see that

(8)
n−2∑

k=1

νk
nCk Pk(x) = 0

for all x ∈ R. Using Lemma 2.1 and (8), we get

nCn−2 Pn−2(x) = 0 = Pn−2(x)
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for all x ∈ R. Now if we continue to carry out the same method as
above, we finally arrive at

nC1 P1(x) = 0 = P1(x)

for all x ∈ R which means

∆(x1, x2, · · · , xn) = 0

for all xi ∈ R. The proof of the theorem is complete.

Here we need the following lemma.

Lemma 2.4. Let n be a fixed positive integer and let R be a n!-torsion
free ring. Suppose that y1, y2, · · · , yn ∈ R satisfy λy1+λ2y2+· · ·+λnyn ∈
Z for λ = 1, 2, · · · , n. Then yi ∈ Z for all i.

Proof. The arguments used in the proof of Lemma 2.2 carry over
almost verbatim.

We continue with the next result for symmetric n-derivations on semiprime
rings.

Theorem 2.5. Let n ≥ 2 be a fixed positive integer and let R be
a noncommutative n!-torsion free semiprime ring. Suppose that there
exists a symmetric n-derivation ∆ : Rn → R such that the trace δ of ∆
is centralizing on R. Then δ is commuting on R.

Proof. Assume that

(9) [δ(x), x] ∈ Z

for all x ∈ R. Let λ (1 ≤ λ ≤ n) be any positive integer. By replacing
x by x + λy in (9) and utilizing (9), we obtain

Z 3 λ
{
[δ(x), y] + nC1[h1(x; y), x]

}

+ λ2
{

nC1[h1(x; y), y] + nC2[h2(x; y), x]
}

(10)

+ · · ·+ λn
{
[δ(y), x] + nCn−1[hn−1(x; y), y]

}

for all x, y ∈ R. From Lemma 2.4 and (10), it follows that

(11) [δ(x), y] + n[h1(x; y), x] ∈ Z

for all x, y ∈ R. Taking y = x2 in (11) and invoking (11) show

(12) Z 3 [δ(x), x2] + n[h1(x; x2), x] = (2n + 2)[δ(x), x]x

for all x ∈ R and commuting with δ(x) in (12) gives

(13) (2n + 2)[δ(x), x]2 = 0

for all x ∈ R.
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On the other hand, substituting y by xy in (11), we obtain

Z 3 [δ(x), xy] + n[h1(x; xy), x]

= x
{
[δ(x), y] + n[h1(x; y), x]

}
+ nδ(x)[y, x] + (n + 1)[δ(x), x]y

for all x, y ∈ R and so we have

[x
{
[δ(x), y] + n[h1(x; y), x]

}
, x]

+ [nδ(x)[y, x] + (n + 1)[δ(x), x]y, x] = 0
(14)

for all x, y ∈ R. Using (11), it follows from (14) that

(15) nδ(x)[[y, x], x] + (2n + 1)[δ(x), x][y, x] = 0

for all x, y ∈ R.
The substitution δ(x)y for y in (15) and the relation (9) yield

0 = δ(x)
{
nδ(x)[[y, x], x] + (2n + 1)[δ(x), x][y, x]

}

+ 2nδ(x)[δ(x), x][y, x] + (2n + 1)[δ(x), x]2y

for all x, y ∈ R which, according to (15), reduces to

(16) 2nδ(x)[δ(x), x][y, x] + (2n + 1)[δ(x), x]2y = 0

for all x, y ∈ R. Taking y = [δ(x), x] into (16), we arrive at (2n +
1)[δ(x), x]3 = 0 and so we have

(2n + 1)[δ(x), x]2R (2n + 1)[δ(x), x]2 = 0

for all x ∈ R. From the semiprimeness of R, we see that

(17) (2n + 1)[δ(x), x]2 = 0

for all x ∈ R. Now, combining (17) with (13) leads to the relation
[δ(x), x]2 = 0 for all x ∈ R. Since the center of a semiprime ring contains
no nonzero nilpotent elements, we conclude that [δ(x), x] = 0 for all
x ∈ R. This completes the proof of the theorem.

Our main result, which is an analogue of Posner’s theorem [5, Theorem
2], is as follows:

Theorem 2.6. Let n ≥ 2 be a fixed positive integer and let R be a n!-
torsion free prime ring. Suppose that there exists a nonzero symmetric
n-derivation ∆ : Rn → R such that the trace δ of ∆ is centralizing on
R. Then R is commutative.

Proof. Suppose that R is noncommutative. Then it follows from The-
orem 2.5 that δ is commuting on R. Hence Theorem 2.3 gives ∆ = 0
which is a contradiction. This guarantees the conclusion of the theo-
rem.
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