JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 22, No. 3, September 2009

BIPOLAR FUZZY TRANSLATIONS IN BCK/BCI-ALGEBRAS

YOUNG BAE JUN*, HEE SIK KIM**, AND KYOUNG JA LEE***

ABSTRACT. A bipolar fuzzy translation and a bipolar fuzzy S-extension of a bipolar fuzzy subalgebra in a BCK/BCI-algebra are introduced, and related properties are investigated.

1. Introduction

Fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. There are several kinds of fuzzy set extensions in the fuzzy set theory, for example, intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets etc. Bipolar-valued fuzzy sets, which are introduced by Lee ([4], [5]), are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. Using the notion of bipolar-valued fuzzy sets, Jun et al. [2] dealt with subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets. Lee [3] discussed bipolar fuzzy subalgebras and bipolar fuzzy ideals in BCK/BCI-algebras. In this paper, we introduce the notion of a bipolar fuzzy translation and a bipolar fuzzy *S*-extension of a bipolar fuzzy subalgebra in a BCK/BCI-algebra, and investigate its properties.

2. Preliminaries

An algebra $(X; *, \theta)$ of type (2, 0) is called a *BCI-algebra* if it satisfies the following conditions:

Received May 19, 2009; Accepted August 14, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 06F35, 03G25; Secondary 08A72.

Key words and phrases: bipolar fuzzy subalgebra, bipolar fuzzy translation, bipolar fuzzy $S\mbox{-}{\rm extension}.$

Correspondence should be addressed to Kyoung Ja Lee, kjlee@hnu.kr.

- (I) $(\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = \theta),$
- (II) $(\forall x, y \in X) ((x * (x * y)) * y = \theta),$
- (III) $(\forall x \in X) \ (x * x = \theta),$
- $(\mathrm{IV}) \ (\forall x, y \in X) \ (x \ast y = \theta, y \ast x = \theta \ \Rightarrow \ x = y).$

We can define a partial order ' \leq ' on X by $x \leq y$ if and only if $x * y = \theta$. Any *BCI*-algebra X has the following properties:

- (a1) $(\forall x \in X) (x * \theta = x).$
- (a2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y).$
- (a3) $(\forall x, y, z \in X) \ (x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$
- (a4) $(\forall x \in X) \ (x \le \theta \Rightarrow x = \theta).$

A subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$.

We refer the reader to the books [1] and [6] for further information regarding BCK/BCI-algebras.

Let X be the universe of discourse. A bipolar-valued fuzzy set φ in X is an object having the form

$$\varphi = \{ (x, \varphi^-(x), \varphi^+(x)) \mid x \in X \}$$

where $\varphi^-: X \to [-1,0]$ and $\varphi^+: X \to [0,1]$ are mappings. The positive membership degree $\varphi^+(x)$ denoted the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set $\varphi = \{(x, \varphi^{-}(x), \varphi^{+}(x)) \mid x \in X\}, \text{ and the negative membership degree}$ $\varphi^{-}(x)$ denotes the satisfaction degree of x to some implicit counterproperty of $\varphi = \{(x, \varphi^{-}(x), \varphi^{+}(x)) \mid x \in X\}$. If $\varphi^{+}(x) \neq 0$ and $\varphi^{-}(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for $\varphi = \{(x, \varphi^{-}(x), \varphi^{+}(x)) \mid x \in X\}$. If $\varphi^{+}(x) = 0$ and $\varphi^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of $\varphi = \{(x, \varphi^{-}(x), \varphi^{+}(x)) \mid x \in X\}$ but somewhat satisfies the counter-property of $\varphi = \{(x, \varphi^{-}(x), \varphi^{+}(x)) \mid x \in X\}$. It is possible for an element x to be $\varphi^+(x) \neq 0$ and $\varphi^-(x) \neq 0$ when the membership function of the property overlaps that of its counter-property over some portion of the domain (see [5]). For the sake of simplicity, we shall use the symbol $\varphi = (X; \varphi^-, \varphi^+)$ for the bipolar-valued fuzzy set $\varphi = \{(x, \varphi^-(x), \varphi^+(x)) \mid x \in X\}$, and use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets.

For two bipolar fuzzy sets $\varphi = (X; \varphi^-, \varphi^+)$ and $\psi = (X; \psi^-, \psi^+)$ in X, the union of $\varphi = (X; \varphi^-, \varphi^+)$ and $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy set $\varphi \cup \psi = (X; (\varphi \cup \psi)^-, (\varphi \cup \psi)^+)$ where

$$(\varphi \cup \psi)^- : X \to [-1,0], \ x \mapsto \min\{\varphi^-(x), \psi^-(x)\},\$$

Bipolar fuzzy translations in BCK/BCI-algebras

 $(\varphi \cup \psi)^+ : X \to [0,1], \ x \mapsto \max\{\varphi^+(x), \psi^+(x)\}.$

The intersection of $\varphi = (X; \varphi^-, \varphi^+)$ and $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy set $\varphi \cap \psi = (X; (\varphi \cap \psi)^-, (\varphi \cap \psi)^+)$ where

$$(\varphi \cap \psi)^- : X \to [-1,0], \ x \mapsto \max\{\varphi^-(x), \psi^-(x)\},$$
$$(\varphi \cap \psi)^+ : X \to [0,1], \ x \mapsto \min\{\varphi^+(x), \psi^+(x)\}.$$

3. Bipolar fuzzy translations

In what follows, let X denote a BCK/BCI-algebra unless otherwise specified.

DEFINITION 3.1. [3] A bipolar fuzzy set $\varphi = (X; \varphi^-, \varphi^+)$ in X is called a *bipolar fuzzy subalgebra* of X if it satisfies:

(3.1)
$$\begin{aligned} \varphi^{-}(x * y) &\leq \max\{\varphi^{-}(x), \varphi^{-}(y)\},\\ \varphi^{+}(x * y) &\geq \min\{\varphi^{+}(x), \varphi^{+}(y)\} \end{aligned}$$

for all $x, y \in X$.

For any bipolar fuzzy set $\varphi = (X; \varphi^-, \varphi^+)$ in X, we denote

$$\perp := -1 - \inf\{\varphi^-(x) \mid x \in X\},\$$
$$\top := 1 - \sup\{\varphi^+(x) \mid x \in X\}.$$

DEFINITION 3.2. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy set in Xand $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. By a bipolar fuzzy (α, β) -translation of $\varphi = (X; \varphi^-, \varphi^+)$ we mean a bipolar fuzzy set $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ where

$$\varphi^{-}_{(\alpha,T)}: X \to [-1,0], \ x \mapsto \varphi^{-}(x) + \alpha,$$
$$\varphi^{+}_{(\beta,T)}: X \to [0,1], \ x \mapsto \varphi^{+}(x) + \beta.$$

THEOREM 3.3. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy subalgebra of X and $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. Then the bipolar fuzzy (α, β) -translation $\varphi_{(\alpha,\beta)}^T = (X; \varphi_{(\alpha,T)}^-, \varphi_{(\beta,T)}^+)$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X.

Proof. Let $x, y \in X$. Then

$$\begin{split} \varphi^-_{(\alpha,T)}(x*y) &= \varphi^-(x*y) + \alpha \leq \max\{\varphi^-(x), \varphi^-(y)\} + \alpha \\ &= \max\{\varphi^-(x) + \alpha, \varphi^-(y) + \alpha\} \\ &= \max\{\varphi^-_{(\alpha,T)}(x), \varphi^-_{(\alpha,T)}(y)\} \end{split}$$

Young Bae Jun, Hee Sik Kim, and Kyoung Ja Lee

and

$$\begin{aligned} \varphi^+_{(\beta,T)}(x*y) &= \varphi^+(x*y) + \beta \ge \min\{\varphi^+(x), \varphi^+(y)\} + \beta \\ &= \min\{\varphi^+(x) + \beta, \varphi^+(y) + \beta\} \\ &= \min\{\varphi^+_{(\beta,T)}(x), \varphi^+_{(\beta,T)}(y)\} \end{aligned}$$

Hence $\varphi_{(\alpha,\beta)}^T = (X; \varphi_{(\alpha,T)}^-, \varphi_{(\beta,T)}^+)$ is a bipolar fuzzy subalgebra of X. \Box

THEOREM 3.4. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy set in X such that the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a fuzzy subalgebra of X for some $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. Then $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X.

Proof. Assume that $\varphi_{(\alpha,\beta)}^T = (X; \varphi_{(\alpha,T)}^-, \varphi_{(\beta,T)}^+)$ is a bipolar fuzzy subalgebra of X for some $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. For any $x, y \in X$, we have

$$\varphi^{-}(x * y) + \alpha = \varphi^{-}_{(\alpha,T)}(x * y) \leq \max\{\varphi^{-}_{(\alpha,T)}(x), \varphi^{-}_{(\alpha,T)}(y)\}$$
$$= \max\{\varphi^{-}(x) + \alpha, \varphi^{-}(y) + \alpha\} = \max\{\varphi^{-}(x), \varphi^{-}(y)\} + \alpha$$

and

$$\varphi^+(x*y) + \beta = \varphi^+_{(\beta,T)}(x*y) \ge \min\{\varphi^+_{(\beta,T)}(x), \varphi^+_{(\beta,T)}(y)\}$$
$$= \min\{\varphi^+(x) + \beta, \varphi^+(y) + \beta\} = \min\{\varphi^+(x), \varphi^+(y)\} + \beta$$

which imply that $\varphi^{-}(x * y) \leq \max\{\varphi^{-}(x), \varphi^{-}(y)\}$ and $\varphi^{+}(x * y) \geq \min\{\varphi^{+}(x), \varphi^{+}(y)\}$ respectively for all $x, y \in X$. Hence $\varphi = (X; \varphi^{-}, \varphi^{+})$ is a fuzzy subalgebra of X.

DEFINITION 3.5. Let $\varphi = (X; \varphi^-, \varphi^+)$ and $\psi = (X; \psi^-, \psi^+)$ be bipolar fuzzy sets in X. If $\varphi^-(x) \ge \psi^-(x)$ and $\varphi^+(x) \le \psi^+(x)$ for all $x \in X$, then we say that $\psi = (X; \psi^-, \psi^+)$ is a *bipolar fuzzy extension* of $\varphi = (X; \varphi^-, \varphi^+)$.

DEFINITION 3.6. Let $\varphi = (X; \varphi^-, \varphi^+)$ and $\psi = (X; \psi^-, \psi^+)$ be bipolar fuzzy sets in X. Then $\psi = (X; \psi^-, \psi^+)$ is called a *bipolar fuzzy* S-extension of $\varphi = (X; \varphi^-, \varphi^+)$ if the following assertions are valid:

- (i) $\psi = (X; \psi^{-}, \psi^{+})$ is a bipolar fuzzy extension of $\varphi = (X; \varphi^{-}, \varphi^{+})$. (ii) If $\varphi = (X; \varphi^{-}, \varphi^{+})$ is a bipolar fuzzy subalgebra of X, then $\psi =$
 - $(X; \psi^-, \psi^+)$ is a bipolar fuzzy subalgebra of X.

By means of the definition of a bipolar fuzzy (α, β) -translation, we know that $\varphi^-_{(\alpha,T)}(x) \leq \varphi^-(x)$ and $\varphi^+_{(\beta,T)}(x) \geq \varphi^+(x)$ for all $x \in X$. Hence we have the following theorem.

Bipolar fuzzy translations in BCK/BCI-algebras

	θ				d
θ	θ	θ	θ	θ	θ
a	a	θ	a	θ	θ
b	b	b	θ	b	θ
c	c	a	С	θ	a
d	$egin{array}{c} a \\ b \\ c \\ d \end{array}$	d	d	d	θ

TABLE 1. *-multiplication table for X

THEOREM 3.7. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy subalgebra of X and $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. Then the bipolar fuzzy (α, β) -translation $\varphi_{(\alpha,\beta)}^T = (X; \varphi_{(\alpha,T)}^-, \varphi_{(\beta,T)}^+)$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy *S*-extension of $\varphi = (X; \varphi^-, \varphi^+)$.

The converse of Theorem 3.7 is not true in general as seen in the following example.

EXAMPLE 3.8. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ where the *-multiplication is defined by Table 1. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy set in X defined by

X	θ	a	b	c	d
φ^{-}	-0.6	-0.4	-0.3	-0.5	-0.1
φ^+	0.8	0.5	0.3	0.6	0.2

Then $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X. Let $\psi = (X; \psi^-, \psi^+)$ be a bipolar fuzzy set in X given by

X	θ	a	b	с	d
ψ^{-}	-0.63	-0.42	-0.37	-0.54	-0.16
ψ^+	0.84	0.56	0.38	0.67	0.21

Then $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy *S*-extension of $\varphi = (X; \varphi^-, \varphi^+)$. But it is not the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$ for all $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$.

Clearly, the intersection of bipolar fuzzy S-extensions of a bipolar fuzzy subalgebra $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy S-extension of $\varphi =$

Young Bae Jun, Hee Sik Kim, and Kyoung Ja Lee

*	θ	a	b	c	d
θ	θ	θ	θ	θ	θ
a	$egin{array}{c} a \ b \end{array}$	θ	θ	θ	θ
b	b	a	θ	θ	θ
c	c	a	a	θ	θ
d	d	c	С	a	θ

TABLE 2. *-multiplication table for X

 $(X; \varphi^-, \varphi^+)$. But the union of bipolar fuzzy *S*-extensions of a bipolar fuzzy subalgebra $\varphi = (X; \varphi^-, \varphi^+)$ is not a bipolar fuzzy *S*-extension of $\varphi = (X; \varphi^-, \varphi^+)$ as seen in the following example.

EXAMPLE 3.9. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ where the *-multiplication is defined by Table 2. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy set in X defined by

X	θ	a	b	c	d
φ^-	-0.6	-0.3	-0.5	-0.2	-0.1
φ^+	0.7	0.4	0.6	0.3	0.3

Then $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X. Let $\psi = (X; \psi^-, \psi^+)$ and $\kappa = (X; \kappa^-, \kappa^+)$ be bipolar fuzzy sets in X given by

X	θ	a	b	с	d
ψ^-	-0.66	-0.33	-0.55	-0.22	-0.22
ψ^+	0.8	0.6	0.8	0.4	0.4

and

X	θ	a	b	c	d
κ^{-}	-0.7	-0.4	-0.6	-0.4	-0.3
κ^+	0.9	0.6	0.6	0.6	0.7

respectively. Then $\psi = (X; \psi^-, \psi^+)$ and $\kappa = (X; \kappa^-, \kappa^+)$ are bipolar fuzzy S-extensions of $\varphi = (X; \varphi^-, \varphi^+)$. But the union $\psi \cup \kappa$ is not a

bipolar fuzzy S-extension of $\varphi = (X; \varphi^-, \varphi^+)$ since

$$\begin{aligned} (\psi \cup \kappa)^-(d*b) &= \min\{\psi^-(d*b), \kappa^-(d*b)\} = -0.4 \\ &\leq -0.3 = \max\{(\psi \cup \kappa)^-(d), (\psi \cup \kappa)^-(b)\}, \end{aligned}$$

but

$$(\psi \cup \kappa)^+ (d * b) = \max\{\psi^+ (d * b), \kappa^+ (d * b)\} = 0.6 \geq 0.7 = \min\{(\psi \cup \kappa)^+ (d), (\psi \cup \kappa)^+ (b)\}.$$

For a bipolar fuzzy set $\varphi = (X; \varphi^-, \varphi^+)$ in X, consider the following two sets:

$$N_{\alpha}(\varphi^{-};t^{-}) := \{x \in X \mid \varphi^{-}(x) \le t^{-} - \alpha\}, P_{\beta}(\varphi^{+};t^{+}) := \{x \in X \mid \varphi^{+}(x) \ge t^{+} - \beta\}$$

where $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$ and $(t^-, t^+) \in [-1, \alpha] \times [\beta, 1]$. If $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X, then it is cleat that $N_{\alpha}(\varphi^-; t^-)$ and $P_{\beta}(\varphi^+; t^+)$ are subalgebras of X for all $(t^-, t^+) \in \text{Im}(\varphi^-) \times \text{Im}(\varphi^+)$ with $t^- \leq \alpha$ and $t^+ \geq \beta$. However, if we do not give a condition that $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X then at least one of $N_{\alpha}(\varphi^-; t^-)$ and $P_{\beta}(\varphi^+; t^+)$ may not be a subalgebra of X as seen in the following example.

EXAMPLE 3.10. Let $X = \{\theta, a, b, c, d\}$ be a BCK-algebra which is given in Example 3.9. Define a bipolar fuzzy set $\varphi = (X; \varphi^-, \varphi^+)$ in X by

X	θ	a	b	c	d
φ^-	-0.8	-0.4	-0.7	-0.2	-0.2
φ^+	0.7	0.4	0.6	0.3	0.5

Then $\varphi = (X; \varphi^{-}, \varphi^{+})$ is not a bipolar fuzzy subalgebra of X since

$$\varphi^+(d * b) = 0.3 \not\ge 0.5 = \min\{\varphi^+(d), \varphi^+(b)\}.$$

Take $(\alpha, \beta) = (-0.15, 0.1)$ and $(t^-, t^+) = (-0.5, 0.5)$. Then $N_{\alpha}(\varphi^-; t^-) = \{\theta, a, b\}$ is a subalgebra of X, but $P_{\beta}(\varphi^+; t^+) = \{\theta, a, b, d\}$ is not a subalgebra of X since $d * b = c \notin P_{\beta}(\varphi^+; t^+)$.

THEOREM 3.11. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy set in X and $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. Then the bipolar fuzzy (α, β) -translation $\varphi_{(\alpha,\beta)}^T = (X; \varphi_{(\alpha,T)}^-, \varphi_{(\beta,T)}^+)$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X if and only if $N_{\alpha}(\varphi^-; t^-)$ and $P_{\beta}(\varphi^+; t^+)$ are subalgebras of X for all $(t^-, t^+) \in \operatorname{Im}(\varphi^-) \times \operatorname{Im}(\varphi^+)$ with $t^- \leq \alpha$ and $t^+ \geq \beta$.

Proof. Necessity is clear. To prove the sufficiency, assume that there exist $a, b, c, d \in X$ such that $\varphi_{(\alpha,T)}(a * b) > \max\{\varphi_{(\alpha,T)}(a), \varphi_{(\alpha,T)}(b)\}$ and $\varphi_{(\beta,T)}^+(c * d) < \min\{\varphi_{(\beta,T)}^+(c), \varphi_{(\beta,T)}^+(d)\}$. Then

$$\varphi^-_{(\alpha,T)}(a*b) > k^- \ge \max\{\varphi^-_{(\alpha,T)}(a),\varphi^-_{(\alpha,T)}(b)\}$$

and

$$\varphi^+_{(\beta,T)}(c*d) < k^+ \le \min\{\varphi^+_{(\beta,T)}(c), \varphi^+_{(\beta,T)}(d)\}$$

for some $(k^-, k^+) \in [-1, \alpha) \times (\beta, 1]$. It follows that $\varphi^-(a) \leq k^- - \alpha$, $\varphi^-(b) \leq k^- - \alpha$, $\varphi^+(c) \geq k^+ - \beta$ and $\varphi^+(d) \geq k^+ - \beta$, but $\varphi^-(a * b) > k^- - \alpha$ and $\varphi^+(c * d) < k^+ - \beta$. This shows that $a, b \in N_{\alpha}(\varphi^-; k^-)$ but $a * b \notin N_{\alpha}(\varphi^-; k^-)$, and $c, d \in P_{\beta}(\varphi^+; k^+)$ but $c * d \notin P_{\beta}(\varphi^+; k^+)$. This is a contradiction. Therefore $\varphi^-_{(\alpha,T)}(x * y) \leq \max\{\varphi^-_{(\alpha,T)}(x), \varphi^-_{(\alpha,T)}(y)\}$ and $\varphi^+_{(\beta,T)}(x * y) \geq \min\{\varphi^+_{(\beta,T)}(x), \varphi^+_{(\beta,T)}(y)\}$ for all $x, y \in X$. Hence $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ is a bipolar fuzzy subalgebra of X.

THEOREM 3.12. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy subalgebra of X and let $\alpha_1, \alpha_2 \in [\bot, 0]$ and $\beta_1, \beta_2 \in [0, \top]$. If $(\alpha_1, \beta_1) \geq (\alpha_2, \beta_2)$, i.e., $\alpha_1 \leq \alpha_2$ and $\beta_1 \geq \beta_2$, then the bipolar fuzzy (α_1, β_1) -translation $\varphi^T_{(\alpha_1,\beta_1)} = (X; \varphi^-_{(\alpha_1,T)}, \varphi^+_{(\beta_1,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy S-extension of the bipolar fuzzy (α_2, β_2) -translation $\varphi^T_{(\alpha_2,\beta_2)} = (X; \varphi^-_{(\alpha_2,T)}, \varphi^+_{(\beta_2,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$.

Proof. Straightforward.

For every bipolar fuzzy subalgebra $\varphi = (X; \varphi^-, \varphi^+)$ of X and $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$, the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$ is a bipolar fuzzy subalgebra of X. If $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy S-extension of $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$, then there exists $(k^-, k^+) \in [\bot, 0] \times [0, \top]$ such that $(k^-, k^+) \ge (\alpha, \beta)$, that is, $k^- \le \alpha$ and $k^+ \ge \beta$ such that $\psi^-(x) \le \varphi^-_{(k^-,T)}(x)$ and $\psi^+(x) \ge \varphi^+_{(k^+,T)}(x)$ for all $x \in X$. Thus we have the following theorem.

THEOREM 3.13. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy subalgebra of Xand $(\alpha, \beta) \in [\bot, 0] \times [0, \top]$. For every bipolar fuzzy S-extension $\psi = (X; \psi^-, \psi^+)$ of the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$, there exists $(k^-, k^+) \in [\bot, 0] \times [0, \top]$ such that $(k^-, k^+) \ge (\alpha, \beta)$, that is, $k^- \le \alpha$ and $k^+ \ge \beta$, and $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy Sextension of bipolar fuzzy (k^-, k^+) -translation $\varphi = (X; \varphi^-_{(k^-,T)}, \varphi^+_{(k^+,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$.

The following example illustrates Theorem 3.13.

Bipolar fuzzy translations in BCK/BCI-algebras

	θ				
θ	$egin{array}{c} a \\ b \\ c \\ d \end{array}$	θ	θ	θ	θ
a	a	θ	θ	a	a
b	b	b	θ	b	b
c	c	c	c	θ	c
d	d	d	d	d	θ

TABLE 3. *-multiplication table for X

EXAMPLE 3.14. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ where the *multiplication is defined by Table 3. Let $\varphi = (X; \varphi^-, \varphi^+)$ be a bipolar fuzzy subset of X defined by

X	θ	a	b	с	d
φ^-	-0.8	-0.5	-0.3	-0.6	-0.2
φ^+	0.7	0.4	0.2	0.5	0.1

Then φ^+ is a bipolar fuzzy subalgebra of X, and $(\bot, \top) = (-0.2, 0.3)$. If we take $(\alpha, \beta) = (-0.1, 0.2)$, then the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$ is given by

	X	θ	a	b	с	d
φ	(α,T)	-0.9	-0.6	-0.4	-0.7	-0.3
φ	$\beta^+_{(\beta,T)}$	0.9	0.6	0.4	0.7	0.3

Let $\psi = (X; \psi^-, \psi^+)$ be a bipolar fuzzy subset of X defined by

X	θ	a	b	с	d
ψ^{-}	-0.93	-0.66	-0.47	-0.76	-0.42
ψ^+	0.94	0.63	0.55	0.88	0.37

Then $\psi = (X; \psi^-, \psi^+)$ is clearly a bipolar fuzzy subalgebra of X which is bipolar fuzzy extension of $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$, and hence $\psi = (X; \psi^-, \psi^+)$ is a bipolar fuzzy S-extension of the bipolar fuzzy (α, β) -translation $\varphi^T_{(\alpha,\beta)} = (X; \varphi^-_{(\alpha,T)}, \varphi^+_{(\beta,T)})$ of $\varphi = (X; \varphi^-, \varphi^+)$. But $\psi = (X; \psi^-, \psi^+)$ is not a bipolar fuzzy (k^-, k^+) -translation of $\varphi = (X; \varphi^-, \varphi^+)$ for $(k^-, k^+) \in [\bot, 0] \times [0, \top]$. Take $(k^-, k^+) = (-0.12, 0.23)$. Then $(k^-, k^+) = (-0.12, 0.23) > (-0.1, 0.2) = (\alpha, \beta)$, and the bipolar fuzzy (k^-, k^+) -translation $\varphi^T_{(k^-, k^+)} = (X; \varphi^-_{(k^-, T)}, \varphi^+_{(k^+, T)})$ of

 $\varphi = (X; \varphi^{-}, \varphi^{+})$ is given as follows:

X	θ	a	b	с	d
$\varphi_{(k^-,T)}^-$	-0.92	-0.62	-0.42	-0.72	-0.32
$\varphi^+_{(k^+,T)}$	0.93	0.63	0.43	0.73	0.33

Note that $\psi^{-}(x) \leq \varphi^{-}_{(k^{-},T)}(x)$ and $\psi^{+}(x) \geq \varphi^{+}_{(k^{+},T)}(x)$ for all $x \in X$, and hence $\psi = (X; \psi^{-}, \psi^{+})$ is a bipolar fuzzy S-extension of the bipolar fuzzy (k^{-}, k^{+}) -translation $\varphi^{T}_{(k^{-},k^{+})} = (X; \varphi^{-}_{(k^{-},T)}, \varphi^{+}_{(k^{+},T)})$ of $\varphi = (X; \varphi^{-}, \varphi^{+})$.

References

- [1] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] Y. B. Jun and S. Z. Song, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Sci. Math. Jpn. 68 (2008), no. 2, 287–297.
- [3] K. J. Lee, *Bipolar fuzzy subalgerbas and bipolar fuzzy ideals of BCK/BCI-algerbas*, Bull. Malays. Math. Sci. Soc. (in press).
- [4] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000), 307–312.
- [5] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets, J. Fuzzy Logic Intelligent Systems 14 (2004), no. 2, 125–129.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul, 1994.

*

Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Republic of Korea *E-mail*: skywine@gmail.com

**

Department of Mathematics Hanyang University Seoul 133-791, Republic of Korea *E-mail*: heekim@hanyang.ac.kr

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: kjlee@hnu.kr