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SOME ALGORITHMS OF THE BEST SIMULTANEOUS
APPROXIMATION

Hyanc J. RHEE*

ABSTRACT. We consider various algorithms calculating best one-
sided simultaneous approximations. We assume that X is a com-
pact subset of R™ satisfying X = intX, S is an n-dimensional
subspace of C(X), and p is any ’admissible’ measure on X. For
any [—tuple fi,---, f¢ in C(X), we present various ideas for best
approximation to F' from S(F'). The problem of best (both one and
two-sided) approximation is a linear programming problem.

1. Introduction

We assume that X is a compact subset of R™ satisfying X = intX, S
is an n-dimensional subspace of C'(X), and y is any ’admissible’ measure
on X, i.e., pu is non-atomic, positive and finite and p(U) > 0 for every
open set U. We assume that we are given [—tuple F' = {f1,---, f¢} in
C(X) with

¢
S(F)=({s €5/ s < i}
i=1
is non-empty. Since S(F') is closed and convex, we have that S(f) # ¢
for all f € C(X) if and only if S contains a strictly positive function.
The problem we shall discuss is

sup{/Xs du| s € S(F)}. (1.1)

Find a best one-sided simultaneous approximation to fi,---, f; from
S(F) is equivalent to finding a s € S(F) satisfying (1.1). We assume
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that sg € S(F) is a solution to (1.1) and

00:/ sodp. (1.2)
X

2. A convergent sequence {o,,}

For each m € N, let z7*,--- ,z]* € X, and assume that the sequence
{z™}™ | becomes dense in X. Any given basis for S, s, -, s", set

pJ:/S]d/*’L7 j:]-u)n
X

For each m, we set
n n )

Om = max{za]p]| Za’jsj(l.;n) < fk(‘r:n)7 = 17 , M, k= 17” : 76}
Jj=1 Jj=1

If for some m there exists a solution s, of o, with s,, € S(F) then the
Sm is a best one-sided simultaneous approximation to fi,---, fr from
S(F'). Before proving the convergence of the algorithm, we need a fact.

REMARK 2.1. There exists an M such that the sequence {0y, }m>nm
is bounded. Moreover, if s, = z;‘:l agnsj is a solution of o, then
{8m }m>m is uniformly bounded.

Its proof is totally analogous to the proof of Remark 3.0.5.[6] We
now prove the convergence result.

THEOREM 2.2. Every convergent subsequence of the set of solutions
{sm} converges to a best one-sided simultaneous approximation sy in
(1.2). Thus the sequence {o,} converges to og in (1.2).

Proof. Let {sm,} be a subsequence of {s,,} with converges to s..
Since S is n-dimensional, this convergence is uniformly convergent to s,

on X. Set
O'*:/ Sedp.
X

Then lim,,, o0 0, = limlim fX Smdp = fX lim s, dpp = fX Sedp =
0s. By definition, o, > o0¢ for all m. Thus o, > 0¢. In the theorem
3.0.6.[6], it follows that s, € S(F'). Thus o, < 09. So 0, = 0p and s, is
a solution of (1.1). Since limo,,, = o¢ for every subsequence {s,,, } on
which converges, and the {s,,} are uniformly bounded for m sufficiently
large, we have

lim oy, = 0y.
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3. The convergence result

Any given basis for S, s',--- s"

A=A{ala= (a1, - ,an), Zajsj < fiyi=1,--- (}.
J

, set

For any a = (a1, -+ ,a,) € R", we also set
n .
gi(a,x) = filx) =Y a;s' ()
j=1

and

Gi(a) = min gi(a,x).

And denoted by

Gla) = 12, Gl

For any a* € A then gj(a*,x) > 0 for all z € X, i = 1,---,¢. So
Gi(a*) > 0, for all i = 1,--- ,¢. By definition, G(a*) > 0. Conversely,
if G(a*) > 0, then g;(a*,z) > 0 for all x € X, i = 1,---,¢. For all i,
fi — Zj a;‘fsj > 0. Thus a* € A. That is, a € A if and only if G(a) > 0.
Moreover, finding a best one-sided simultaneous approximation to F’
from S(F) is equivalent to finding a a* € A4, }_, a;fsj satisfying (1.1).
We claim that the best one-sided simultaneous approximation prob-
lem is an almost totally general form of a linear programming problem.
To demonstrate this fact, consider any linear programming problem of

the form .
maXZajpj
j=1
subject to:
n
Zajsj < fia 1= 1) 76'
j=1

The equivalence holds under certain minor restrictions. These re-
strictions are:
(1) There exist {a;}7_; satisfying >>%_; a;s? < fi, i=1,--- L
(2) The maximum is in fact attained, i.e., the solution is not oco.
(3) The solution set is bounded.
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To verify this equivalence, note that if there existsad = (dy,--- ,dy) #
0 satisfying

(a) Z d;s’ <0,
j=1

(b)Y djp; >0,
j=1

then either condition (2) or (3) is violated. Thus there exists no d # 0
satisfying (a) and (b).

In this algorithm, we start with a set By = {z1, -+ ,2p} of points
in X, where we assume that the points are chosen so that there exists
no d # 0 satisfying

(a") >0, djsi(zg) <0, k=1,---, M,
(') 25— dipj = 0.

Equivalently, there exists no s € S\ {0} satisfying s(zx) < 0, k =

1,---, M, and [y sdyp > 0. Thus the problem

n
max E a;p;
j=1

subject to:

Zajsj(:ck)gfi(xk)7 k=1,--- Mi=1,--- ¢
j=1

has a finite maximum and the solution set is bounded. We shall need

some 1more.

LEMMA 3.1. Assume that the {z1,--- ,z)} are given such that there
exists no d € R™\{0} satisfying (a') and (b'). Let Cy < Cy be any fixed
constants. Then the set of a € R™ satisfying

G)ZCL]SJ(LU]C) Sfl(xk)) k: ]-a 7M/L:]-a ’E
j=1

b)Cr < ajp; < Ch
=1

is bounded.
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Proof. Suppose that the set of a € R" satisfying a) and b) is un-
bounded. Thus there exists a sequence of {a,}>2; in R" satisfying a)
and b), and an index ¢t € {1,--- ,n} such that

(1) |at| = max{|aj| : j = 1,--- ,n}
(2) lim eaj = oo, for some € € {—1,1}.
r—o0
Let d} = ag/af, j=1,---,n. On a subsequence, again denoted by {r},
we have

lim df =dj, j=1,---,n,

T—00 J
i.e., the limits exist. Thus |d;| <1, j=1,---,n, and d; = 1. Since the
a, satisfy a) and b), it follows after dividing by a] and letting r — oo,
that
n
€Zd]8’]($z) <0,i=1,---,M,
j=1

n
Z djpj =0.
j=1

However this contradicts our assumption with respect to a’) and V).
This proves the lemma. O

We now describe the algorithm. Assume that we are given B,, =
{z1, -+ ,zp} for some m > M. Then B,,11 is obtained as follows.
We first solve the finite problem

Om = maX{ZajpﬂZajsj(:ci) < fe(zi), i=1,--- ,m, k=1,--- ([}

=1 j=1

Since m > M, {x1,--- ,2nm} C By, By Lemma 3.1, this problem has a
solution a™ = (af*, - ,ay'). If G(a™) > 0, then 7, a's? € S(F'). Set

Ap = {CL a = (al’ t ’an)vzajsj(xi) < fk(xl)a
Jj=1

i=1,,m, k=1,---,0}.
IE°70 ajst < fron{wy, -+, xmy1}foralli € {1, ¢} then > a;s!
< fron{xy, - ,xy} forallie{1,---,¢}, so
Ay D AM+]_ DA

Thus 0y, > 01, that is, {oy,41} is a non-increasing sequence bounded
below by g, > i_, a]'p; > a0, i.e., Y5 aT's’ satisfy (1.1), so we have
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found a best one-sided simultaneous approximation to our original prob-
lem. We are finished.

We therefore assume that G(a™) < 0. Then there exists X411 €
X\ B, and for some ig € {1,---, ¢}, satisfy

n

fio(@m41) < Za}”sj(a:mﬂ)

Jj=1

and G(a™) = gi, (@™, Tpm41). Set Byp1 = By U {@my1}-
This is the algorithm. In what follows we assume that the algorithm
does not terminate after a finite number of steps.

THEOREM 3.2. In the above algorithm

lim o, = 0g.
m—0o0

And the solution set {a™} is a bounded sequence, moreover if a* Is any
cluster point of this sequence then Y | afs' is a solution of (1.1).

Proof. Since {oy,} is a non-increasing sequence bounded below by oy,
for each m > M,

n
Za;”sj(a;i) < felxy), i=1,--- M, k=1,--- ¢,
j=1

and

n
00 <Y a'p; < our.

j=1
From Lemma 3.1, the {a™} form a bounded sequence.
Let a* = (af, - ,ay,) be any cluster point of {a™}, and o, = >°7_, ajp;.
Then

lim o,, =0y > 0y.
m—0o0

Ifa* € A, ie., 2?21 a;fsj < fx, k € {1,---,£}, then o, < 0 and the
theorem is proved. We shall prove that a* € A.
Assume that a* ¢ A, ie., G(a*) < 0. Since a* is a cluster point of
{a™}, and
Ay D AM+1 D) --~A,
a* € Moo_ps Am- We can choose a subsequence {a™}, lim, o ™" = a*
and S is finite-dimensional, the functions Z;”:l a;-nrsj uniformly con-
verge to Z?:l a;sj on X. Thus there exists an M; such that for all
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m 2 M17
n . n . 1
I Z;a;k»sj — Zla;»"stoo < —5G(a").
J= J=

Let m, > max{M, M;}. Then

n

G(a™) = gio(a™ , Tmo11) = fio(@m, 1) = Y a8 (@, 41)
j=1
for some ig € {1,---,¢}. Since a* € (\o_,; Am, we have a* € Ay, 41,
and therefore

n
Gio (@™ T s1) = Fio(Tm41) = Y a8 (2, +1) = 0.
7j=1

Thus

G(a™) = gig (@™, T, 1)
n

= 9o (0", @m, 1) + (@] — @) (wm,41)
j=1

n
> (0 —a")s (wm11)
j=1

> %G(a*).

In other words G(a™) > $G(a*) for all m, > M. But G is continuous
on R", and lim, o ™ = a*. Thus G(a*) > $G(a*). Since G(a*) < 0,
this is a contradiction. Thus a* € A. O

For example, suppose that X = [0, 7] and S = R. If F' = {sin(z)} and
Ay, ={1/m,--- ,(m—1)/m}, then oy, = sin(1/m) -7 and limy, 00 o, =
0. So sin(z) has a best one-sided approximation 0 from R on [0, 7].

This paper is concerned with algorithms for calculating best one-
sided simultaneous approximations, a partial discretization, a partial
discretization with optimization, respectively. The problem of best two-
sided simultaneous approximation can also be shown to be a linear pro-
gramming problem. This fact is almost as straightforward as in the
one-sided approximation. So this algorithms will expand the algorithms
for calculating best two-sided simultaneous approximations.
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