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UNIQUENESS AND MULTIPLICITY OF SOLUTIONS
FOR THE NONLINEAR ELLIPTIC SYSTEM

TACKSUN JUNG* AND Q-HEUNG CHOI **

ABSTRACT. We investigate the uniqueness and multiplicity of so-
lutions for the nonlinear elliptic system with Dirichlet boundary
condition

—Au+ g1(u,v) = fi(x) in Q,
_AU+92(U7U) :fQ(‘T) in €,
where €2 is a bounded set in R™ with smooth boundary 0. Here

g1, g2 are nonlinear functions of u,v and g1, g2 are nonlinear func-
tions of u,v and fi, f2 are source terms.

1. Introduction

In this paper we investigate the uniqueness and multiplicity of solu-
tions for the nonlinear elliptic system with Dirichlet boundary condition
— Autg(uo) = fi(w) i Q

(1.1) — Av + g2(u,v) = fao(x) in Q,
u =0, v=20 on 0,
where 2 is a bounded set in R™ with smooth boundary 9). Here g1, go

are nonlinear functions of u,v and f1, fo are source terms.
System (1.1) can be rewritten by

~AU +G(U) = (g) in Q,

(1.2)

where U = (7)), G(U) = (), —~AU = (Z39)-
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System (1.1) of the nonlinear biharmonic equations with Dirichlet
boundary condition is considered as a model of the cross of the two
nonlinear oscillations in differential equation.

For the case of the single biharmonic equation Tarantello([9]), Lazer
and McKenna([7]), Choi and Jung ([4]) etc., investigate the multiplicity
of the solutions via the degree theory or the critical point theory or the
variational reduction method. In this paper we improve the multiplicity
results of the single biharmonic equation to the case of the system of the
nonlinear elliptic system.

Let 2 be a bounded set in R™ with smooth boundary 92. Let A, k =
1,2,..., denote the eigenvalues and ¢x, k = 1,2, ..., the corresponding
eigenfunctions, suitably normalized with respect to L?(Q) inner product,
of the eigenvalue problem

Au+Au=0 in Q,

u=20 on 0,

where each eigenvalue \j is repeated as often as its multiplicity. We
recall that 0 < A\ < Ao < A3 < ... — 400, and that ¢1(z) > 0 for
x € . The set of functions {¢} is an orthonormal base for L?(Q). Let
us denote an element u, in L?(Q), as

u:thgbk, Zhi<oo.
We define a subspace D of L?(f2) as follows
D= {uecL*(Q)|> Mhi < oo}
Then this is a complete normed space with a norm
lall = (37 Ahi]
Let us set E =D x D. We endow the Hilbert £ with the norm
1w, o)1 = llull® +[lv]* Y(u,v) € E.

We are looking for the weak solutions of (1.1) in F, that is, (u,v) satis-
fying the equation

[sutmonz+ [ oot puoye- [ fz- [ fw=0

for all (z,w) € E.
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In section 2 we investigate the uniqueness of solutions for the nonlin-
ear elliptic system with Dirichlet boundary condition
—Aut+avt =ag;+f in Q,
(1.3) —Av+but =B¢1+g in Q,
u =0, v=20 on 052,
where u™ = max{u,0}, a,b € R, o, € R,. Here ¢;is the positive
eigenfunction of the eigenvalue problem Awu 4+ Au = 0 in Q, u =
0 on 002 and A is the first eigenvalue corresponding to ¢1. In section
3 we investigate the multiplicity of solutions for the nonlinear elliptic
system with Dirichlet boundary condition
—Au+av” =ag; +ef in €,
(1.4) — Av+bu~ = (o1 + €29 in €,
u =0, v=20 on 0f2.

2. Uniqueness result for the elliptic system

In this section we investigate the uniqueness of solutions for the non-
linear elliptic system with Dirichlet boundary condition

—Au+avt =agp + f in Q,
(2.1) —Av+bu" =pp1+g in Q,
u =0, v=>0 on 0f),

where u™ = max{u,0}, a,b € R, a,3 € R,. Here ¢;is the positive
eigenfunction of the eigenvalue problem Awu 4+ Au = 0 in Q, u =
0 on 0f) and A; is the first eigenvalue corresponding to ¢1.

The subspace D of L?(),

D ={uec L*(Q)] > Ahj < oo},
a complete normed space with a norm
lull = 137 Axh3z.
Let us set £ =D x D. We endow the Hilbert space E with the norm
1w, )1 = [lull® + [l

We are looking for the weak solutions of (2.1) in D x D, that is, (u,v)
such that w € D, v € D, Lu + av’t = a1 + f, Lv + au™ = Bo1 + g.
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LEMMA 2.1. Suppose that c is not an eigenvalue of L : D — Hy,
Lu = u — Au, and let f € D. Then we have (L —c)~'f € D.

Lemma 2.1 was proved in [3].

LEMMA 2.2. The system
— Au+ av = apy in €,
(2.2) — Av + bu = (¢ in Q,
u =0, v=20 on 0f),
has a unique solution (u*,v*) € E =D x D, which is of the form
.« aA — 0B « _ BAM —aa

A2 — ab ¢1, 22— ab o1

Proof. We note that (u*,v*) is a solution of the system (2.2) and the
uniqueness is trivial. ]

We need to find a spectral analysis for the linear operator —AU. The
following lemma need a simple ‘Fourier Series’ argument.

LEMMA 2.3. Leta, b€ R and let Ly, : D x D — L?(Q2) x L*(Q)
be defined by Lu,(u,v) = (Lu + av, Lv + bu). For p € R we have
(a) if (\j — p)? # ab for every j, then

(Lap — D)7 L2(Q) x L2(Q) — L*(Q) x L*(Q)

is well defined and continuous;
(b) if (A\; — u)? = ab for some j, then

Ker(Lap — pI) = span{¢; : (Aj — p)* = ab};
moreover if X,, = span{¢mn : (Amn — )% # ab}, then
(Lap —puD)™H: X, x X, — X, x X,

is well defined and continuous.
Notice that if ab < 0, the second alternative can never occur.

For the proof of the lemma we refer [3].
We assume that

(2.3) A7 —ab # 0, for all j with j > 0,
(2.4) a < A1, b < A1,

(2.5) ab >0, Vab < \;.
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Using Lemma 2.3 with the case L(u,v) = (Lu,Lv) we can easily
derive the following lemma.

LEMMA 2.4. Assume that the conditions (2.3), (2.4) and (2.5)
hold. Then the system

—Au+av =0 in €,
—Av+bu=0 in €,
u =0, v=>0 on 0f),

has only the trivial solution U = (8).

LEMMA 2.5. Assume that f, g € D with [, f¢1 = [o9¢1 = 0.
Then the system

—Au+tav=Ff in €,
—Av+bu=g in €,
u =0, v=20 on 0f),

has a unique solution (ug,vg) € E =D x D.

THEOREM 2.6.  (Existence of a negative solution) Assume that the
conditions (2.3), (2.4) and (2.5) hold. Assume that f, g € L?(Q) with
Jo fé1 = Jq 901 =0. Then there exists (o, fo) with ag < 0 and By < 0
such that the system (2.1) has a negative solution (u,0) with @ < 0 and
© < 0 for each o and 3 with o < o and 8 < [,

Proof. By Lemma 2.2 and Lemma 2.5, (u* + ug, v* + vp) is a solution
of the system

—Au+av=ad + f in Q,
—Av+bu=pP¢1+g in Q,
u =0, v=20 on 0f).

By Lemma 2.6, ug € D and vg € D. Since the elements of D lies in C1,
the elements ug, vg € C'. Thus we can find (g, B9) with ag < 0 and
Bo < 0 such that u* +ug < 0 and v* + vg < 0 for each a < ag and
B < By. Thus we prove the theorem . O

THEOREM 2.7. (Existence of a positive solution) Assume that
the conditions (2.3), (2.4) and (2.5) hold. Assume that f, g € L*(Q)
with [, f¢r = [ogp1 = 0. Then there exists (o, 31) with aq > 0 and
(1 > 0 such that system (2.1) has a positive solution (t,0) with @ > 0
and ¥ > 0 for each « and 3 with o > o1 and 3 > (1
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Proof. By Lemma 2.2 and Lemma 2.5, (u* + ug, v* + vp) is a solution
of the system

—Au+av=ap; + f in €,
—Av+bu=p¢1+g in €,
u =0, v=20 on 0f).

By Lemma 2.5, ug € D and vg € D. Since the elements of D lies in C*,
the elements ug, vo € C'. Thus we can find (a1, 31) with a; < 0 and
61 < 0 such that uv* + up < 0 and v* + vg < 0 for each o < a7 and
B < (1. Thus we prove the theorem . O

THEOREM 2.8.  (Uniqueness Theorem) Assume that the conditions
(1.2), (1.3) and (1.4) hold and f, g € L*(Q) with [, f¢r = [, 9¢1 = 0.
Then, (i) system (2.1) has a unique solution in D x D. In particular,
(ii) there exists (o, Bo) with ag < 0 and By < 0 such that system (2.1)
has a unique solution, which is a negative solution (u,v) with 4 < 0 and
© < 0 in Theorem 2.6 for each o and 3 with o < ag and < (B,

(iii) there exists (o1, $1) with a; > 0 and 31 > 0 such that system (2.1)
has a unique solution, which is a positive solution (4, 0) with 4 > 0 and
© > 0 in Theorem 2.7 for each o and 8 with o > a1 and (8 > [31.

Proof.  Assume that conditions (2.3), (2.4) and (2.5) hold. First we
will prove (i). To prove it we use the contraction mapping principle.
By assumption (2.5), —A; < —Vab < 0 < Vab < \. Let us set § = \1.
Then system (2.1) is equivalent to

(2.6) U= (L+6D)7 I - AU —6IU + <a¢1 N f)],

Bo1+yg
where A = (2 0), Ut = (ZI), U™ = (") and (£L+ )" is a compact,

(2

self-adjoint, linear map from L2(Q) x L?(2) into L?(Q) x L?(R) with
norm ﬁ We note that

|(61—A)(US —U) 81Uy —U)|| < max{det(61—A),det(61)}||Us—Uy||

< ||U2 - U1 ||
It follows that the right hand side of (2.6) defines a Lipschitz mapping
of L?(Q) x L*(Q) into L*(Q) x L?() with Lipschitz constant v < 1.
Therefore, by the contraction mapping principle, there exists a unique
solution U = (1) € L*(Q) x L*(Q) of (2.6). By Lemma 2.1, U = () €
D x D. Thus (i) is proved and (ii) and (iii) come from Theorem 2.6 and
Theorem 2.7. O
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3. Multiple solutions for the elliptic system

In this section we investigate the multiplicity of solutions for the
nonlinear elliptic system with Dirichlet boundary condition

—Au+av =apr + e f in €,

(3.1) — Av +bu” = Bp1 + €ag in Q,
u =0, v=20 on Jf.

Here we assume that o > 0, 6 > 0.

LEMMA 3.1. Assume that o > 0, 3 > 0. Assume that (\? —
ab)(A13 — ab) < 0, (A2 — ab)(A1a — Ba) < 0. Then the system

—Au+av” = apy in €,
(3.2) — Av+bu” = 3¢, in Q,
u =0, v=1_0 on 0f).

has at least two solutions, one of which is positive, and one of which is
positive.

Proof. Assume that a > 0, § > 0. Then system (3.2) has a positive

solution Uy = (1;11)

«
up = )qubl’ v = )\ﬁlﬁbr

Since (A2 — ab)(\18 — ab) < 0, (A2 — ab)(A\a — Ba) < 0, system (3.2)

has a negative solution Uy = (7;;)

Alﬁ_abgf) Ala—ﬁa¢

Uy = —5—— @1, = —0¢1.

SNDVIEPTRS X —ab

Hence (3.2) has at least two solutions, one of which is positive, and one

of which is positive. ]
THEOREM 3.2. (Existence of two solutions) Assume that o > 0,

B > 0. Assume that (A\? — ab)(A\13 — ab) < 0, (A} — ab)(\1a — Ba) < 0.
Let || f|| = |lg|| = 1. Then there exists (€7, €3) such that if e; < €], €2 < €5
then system (3.1) has at least two solutions, one of which is positive,
and one of which is positive.

The proof of Theorem 3.2 is similar to that of Theorem 2.8.
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