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ON h-STABILITY OF LINEAR DIFFERENCE SYSTEMS
VIA n.- QUASISIMILARITY

SunGg Kyu ChHor*, BowoN KaNnG**, Namjip Koo*** AND HYUN
MORK LEE****

ABSTRACT. In this paper, we study h-stability for linear differ-
ence systems by using the notion of n..-quasisimilarity and discrete
Gronwall’s inequality.

1. Introduction

Let Z4 be the set of nonnegative integers and M, (R) be the set of
n X n matrices over R. We define the following sets:

M, = {A|A:Zy — M,(R) is a matrix — valued function},
S = {SeM,|Sand S! are bounded},

T = {FeM,| Z F(m) exists},
m=0

A = {FeMy| ) |F(m)exists},
m=0

where |A| is some norm of matrix A.
We consider two linear difference systems

(1.1) Az(m) = A(m)x(m), m € Z,
and
(1.2) Ay(m) = B(m)y(m), m € Zy,
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where A is the forward difference operator, and I + A(m) and I + B(m)
are invertible on Z,. Then we recall that X,Y € M,, defined by

m—1 m—1
X(m)= [[UI+A@), Y(m)= ][]+ B(),
=0 1=0

are called fundamental matrices for (1.1) and (1.2), respectively. Also
we see that if mg is a fixed nonnegative integer, then the solutions of
(1.1) and (1.2) satisfy

x(m) = X(m)X_l(mo):r(mo),
y(m) = Y(m)Y ' (mo)y(mo), m > mo,

respectively.

Trench [11] introduced t-quasisimilarity that is not symmetric or
transitive, but preserves strict and uniform stability of linear differential
systems, and has linear asymptotic equilibrium. He also introduced
the notion of ne.-summable similarity which is the corresponding t¢..-
quasisimilarity for the discrete case and gave the analogs of some of
results in [6, 11] for difference systems.

In this paper, we study h-stability for linear difference systems by us-
ing the notion of ny-quasisimilarity and discrete Gronwall’s inequality.

2. Main results

The following lemma is the discrete Gronwall-tpye inequality to need
to prove our main results.

LeEMMA 2.1. [8] Let u(j),b(j) be nonnegative sequences defined on
Zy and c a positive constant, and suppose that

j—1
u(j) <c+ Z b(m)u(m), j > my.

m=mg

Then we have

j—1
u(j) < cexp( Y b(m)), j = mo.

m=mo

LEMMA 2.2. [10] Let X (m) be a fundamental matrix for (1.1) with
X(0)=1I. Then (1.1) is
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(i) uniformly stable if and only if there is a positive constant C' such
that

XX <C0<i<.

(ii) exponential stable if and only if there are positive constants C
and p with 0 < p < 1 such that

IX(HX 6| < CpP 0<i <.

Now, we recall the definition of h-stability introduced by Medina and
Pinto [9].

DEFINITION 2.3. (1.1) is h-stable if there exist a constant ¢ > 0 and
a positive bounded function h : Z; — R such that for any mg € Z and
xo € R™, the corresponding solution x(m, mg, zo) satisfies

(2.1) |z(m, mg, 20)| < c|xg|h(m)h(me) L, m > my,
-1_ _1_
where h(m)™" = Ry

LEMMA 2.4. If (1.1) is h-stable if and only if there exist a positive
bounded function h defined on Zy and a constant ¢ > 1 such that

XX 1) < ch(G)hG) Y, § >4,
where X (j) is a fundamental matrix for (1.1) with X(0) = I.

We recall the notion of ns-quasisimilarity in [10] as a discrete analog
of Trench’s definition of t,-quasisimilarity in [11].

DEFINITION 2.5. [10] Let A, B € M,,. Then B is no-quasisimilar to
A if there is an S € S that the n x n matrix function F(?) defined by

(22)  FO(m) = AS(m) + S(m + 1)B(m) — A(m)S(m)

is in Z. Either F(©) € A, or there is a positive integer p such that the
n x n matrix functions FU ... F®) defined by

Q" (m) = i FU= (k)
k=m

and
FO(m) = Q" (m + 1)B(m) — A(m)Q" (m), 1 <r <p
are in Z, and F® € A.
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REMARK 2.6. neo-quasisimilarity with p = 0 in the definition 2.5
becomes noo-similarity (or summable similarity [10]) which is an equiv-
alence relation preserving linear asymptotic equilibrium and uniform,
exponential, and strict stability.

We need the the following lemma [10] in order to prove our main
result.

LEMMA 2.7. [10, Lemma 1] Suppose that B is n-quasisimilar to A.
Define

IO+ 7andT =74+571Y Q" 1<r<p.

Then
)y () = Sfl(j)X(j)[Xfl(i)S(i)F(p) (9)Y (@)

+ ZX +1)FP (m)Y(m)], 0<i<j.

THEOREM 2.8. Suppose that (1.1) is h-stable and B is no-quasisimilar
to A with 3% 5| FP) (m)| < oo. Then (1.2) is h-stable.

Proof. From Lemma2.4, there exist a positive bounded function h :
Z+ — R and a constant ¢ > 1 such that

(2.3) X)X THO] < ch(h(D)7, 5 =4,
where X (j) is a fundamental matrix for (1.1). From Lemma 2.7

YGYTH6) = (F(p)('))‘ls‘ ()X GX@)SEHTP ()
+ ZX (m+ 1) FP (m)Y (m)Y(i)], 0<i<j.

Note that T'(P) S, (F(p))_ , and S™! are bounded. Then this and (2.3)
implies that there are positive constants ci, co such that

Y ( ') _1(')| < crh(j)h(i) ™
(2.4) +cQZh h(m + 1) F® (m)||Y (m)Y 1 (5)[],0 < i < J.

Dividing (2.4) by h(j) yields the inequality

Y ()Y ()] 1, h(m) :
T < Clh(l) 1+627nz_ifl(m_“1)|F(p)(m)‘h(m)]’
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for j > ¢ > 0. From Lemma 2.1, we obtain

j—1
N1 N h(m)
1 1 (p)
YOY @ € eh(h6) exp <m2: o <m>|)
< ch(Hh()™!, j=i=0,
where ¢ = c¢pexp(c2d hm+1)‘F )(m)|). Hence (1.2) is h-stable.
This completes the proof. O

REMARK 2.9. If h(j) is a positive bounded function on Z4, then
h(4)
h(j+1)

COROLLARY 2.10. Suppose that B is n-quasisimilar to A and (1.1)

is h-stable with bounded function 37 (+)1) Then (1.2) is h-stable.

- CoROLLARY 2.11. If the function h is constant or is given by h(j) =
¢’ in Theorem 2.8, then (1.2) is uniformly stable or exponentially stable.

is not bounded in general. For example, see [4, Remark 3.1].

THEOREM 2.12. Suppose that

(2.5) > A(m)| < oo
m=0

and there is an S € S such that the n x n matrix function Ky defined
by
Ko(m) = AS(m) + S(m+1)(B(m) — A(m))
isin A, or it is in Z and there is a positive integer p such that the n X n
matrix functions Ky, - -- , K, defined by
(2.6) Ko (m) = ( S Kr_luc)) (B(m) — A(m)), 1< 7 <p,
k=m+1
are in Z, and K, € A. Then (1.2) is h-stable.
Proof. We note that the solution x(m) of (1.1) with the initial value
x(mg) = xo satisfies the relation
m—1
x(m, mg, o) = xo + Z A(k)z(k), m > my.
k=myg
In view of the condition (2.5) of A and Lemma 2.1, we have
m—1
j(m, mo, wo)| < |wo|exp | Y [A(K)] | = |zolh(m)h(mo) ™", m > my,

k=mg
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where h(m) = exp(zzzol |A(k)|) is a positive bounded function on Z. .
Thus (1.1) is h-stable. We easily see that % is bounded on Z, .
Next, we show that B is no.-quasisimilar to A. (2.2) becomes
FO(m) = AS(m)+ S(m+1)B(m) — A(m)S(m)
= AS(m)+ S(m+1)(B(m)— A(m))+ S(m + 1)A(m)
—A(m)S(m).
It follows from (2.5) that F© ¢ A. There is a positive integer p such
that the n x n matrix functions £, ... | F(®) defined by

o0

QU(m) = 3 FC ),

k=m
FO(m) = Q" (m+1)B(m)— A(m)Q")(m)
= QU (m+1)(B(m) — A(m)) + Q") (m + 1) A(m)
—Am)Q" (m)
= K:(m)+ Q" (m+1)A(m) — Am)Q"(m), 1 <r<p
are in Z, and F® e A. This implies that B is neo-quasisimilar to A.

Hence (1.2) is h-stable in view of Theorem 2.8. This completes the proof.
O

If A=01in (1.1), then we obtain easily the following corollary by Theo-
rem 2.12. We also can give another proof of the corollary.

COROLLARY 2.13. Suppose that there is an S € S such that the nxn
matrix function F©) defined by

(2.7) FO(m) = AS(m) + S(m + 1) B(m)

isin A, or it is in 7 and there is a positive integer p such that the n x n
matrix functions FV ... | F®) defined by

(28)  FU(m)= ( YOF ””(M) B(m), 1<r<p.
k=m+1
are in T, and F?) € A. Then (1.2) is h-stable.

Proof. We easily see that the fundamental matrix X of (1.1) with
A =0 is given by X(j) = I. This and the argument used in the proof
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of Theorem 2.8 implies that

7j—1
Y)Y '(@)] < crexp 02Z|F(p)(m)!
< ah(ir@) ™, j=i>0,

where h(j) = exp(ca an;lo |F®)(m)|) is a positive bounded function.
Hence (1.2) is h-stable by Lemma 2.4. This completes the proof. O
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