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RECURSIONS FOR TRACES OF SINGULAR MODULI

Chang Heon Kim*

Abstract. We will derive recursion formulas satisfied by the traces
of singular moduli for the higher level modular function.

1. Introduction

Let H be the complex upper half plane and let Γ be the full modular
group PSL2(Z). Since Γ acts on H by linear fractional transformations,
we get the modular curve Γ\H∗, as the projective closure of the smooth
affine curve Γ\H. Since the genus of Γ\H∗ is zero, the function field of
Γ\H∗ is the rational function field C(j). Here j is the modular invariant
which is uniquely characterized by j(∞) = ∞, j(−1+

√
−3

2 ) = 0 and
j(
√
−1) = 1728. The property j(τ + 1) = j(τ) implies that j admits a

Fourier expansion with respect to q = e2πiτ (τ ∈ H), which is called a
q-series (or q-expansion) as follows:

j(τ) = q−1 + 744 + 196884q + · · · .

“Singular values” or “singular moduli” is the classical name for the val-
ues assumed by the modular invariant j(τ) (or by other modular func-
tions) when the argument is an imaginary quadratic irrationality. These
values are algebraic numbers and have been studied intensively since the
time of Kronecker and Weber. In [2], formulas for their norms and for
the norms of their differences were obtained. In [3], a result for their
traces and a number of generalizations were also obtained. Let d de-
note a positive integer congruent to 0 or 3 modulo 4. We denote by
Qd the set of positive definite binary quadratic forms Q = [a, b, c] =
aX2 + bXY + cY 2 (a, b, c ∈ Z) of discriminant −d, with usual action
of the modular group Γ. To each Q ∈ Qd, we associate its unique root
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αQ ∈ H. Let t(d) be the (weighted) trace of a singular modulus of
discriminant −d, that is,

t(d) =
∑

Q∈Qd/Γ

1
|Γ̄Q|

(j(αQ)− 744).

Here Γ̄Q = {γ ∈ Γ̄ = PSL2(Z) | Q ◦ γ = Q}. In addition we set
t(−1) = −1, t(0) = 2 and t(d) = 0 for d < −1 or d ≡ 1, 2 (mod 4).
Zagier’s trace formula [3, Theorem 1] says that the series

∑
d∈Z t(d)qd

(q = e2πiτ , τ ∈ H) is a modular form of weight 3/2 on Γ0(4) (= {
(

a b
c d

)
∈

SL2(Z) : 4|c}), holomorphic in H and meromorphic at cusps. Moreover
he derived a recursion formula for t(d) (see [3, Theorem 2]).

Let Γ0(N)∗ be the group generated by Γ0(N) (= {
(

a b
c d

)
∈ SL2(Z) :

N |c}) and all Atkin-Lehner involutions We for e||N . Here e||N denotes
that e|N and (e,N/e) = 1, and We can be represented by a matrix
1√
e
( ex y

Nz ew ) with detWe = 1 and x, y, z, w ∈ Z. There are only finitely
many values of N for which Γ0(N)∗ is of genus 0. In particular, if we
let S denote the set of prime values for such N , then

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

For each p ∈ S, let j∗p be the corresponding Hauptmodul. Let d be
an integer ≥ 0 such that −d is congruent to a square modulo 4p. We
choose an integer β (mod 2p) with β2 ≡ −d (mod 4p) and consider the
set Qd,p,β = {[a, b, c] ∈ Qd | a ≡ 0 (mod p), b ≡ β (mod 2p)} on which
Γ0(p) acts. we define the trace t(p)(d) by

t(p)(d) =
∑

Q∈Qd,p,β/Γ0(p)

1
|Γ̄0(p)Q|

j∗p(αQ).

Here are some numerical examples when p = 2: first, we note that j∗2
can be expressed by means of Dedekind eta functions, that is,

j∗2(τ) =
(

η(τ)
η(2τ)

)24

+ 24 + 4096
(

η(2τ)
η(τ)

)24

where η(τ) = q1/24
∏∞

n=1(1− qn). Then
t(2)(4) = 1

2j∗2
(
α[2,−2,1]

)
= −52, t(2)(7) = j∗2

(
α[2,−1,1]

)
= −23, t(2)(8) =

j∗2
(
α[2,0,1]

)
= 152, t(2)(12) = j∗2

(
α[2,2,2]

)
+j∗2

(
α[4,2,1]

)
= −496, t(2)(15) =

j∗2
(
α[4,1,1]

)
+ j∗2

(
α[2,1,2]

)
= −1, t(2)(16) = 1

2j∗2
(
α[4,−4,2]

)
+ j∗2

(
α[2,0,2]

)
+

j∗2
(
α[4,0,1]

)
= 1036, etc.

In this article we will derive the following recursion formula for t(2)(d):



Recursions for traces 185

Theorem 1.1. For all integers n ≥ 1 we have the identities

t(2)(8n− 4) = −(120n− 20)σ3(n) + 42σ5(n)

−
∑

3≤r≤
√

8n+1

r4 − r2

12
t(2)(8n− r2)

t(2)(8n− 1) = −240σ3(n)−
∑

2≤r≤
√

8n+1

r2t(2)(8n− r2)

t(2)(8n) = −2
∑

1≤r≤
√

8n+1

t(2)(8n− r2)

where σk(n) =
∑

d>0
d|n

dk.

We note that the above recursion determines t(2)(d) completely from
the initial value t(2)(−1) = −1:
t(2)(4) = −100σ3(1) + 42σ5(1)− 34−32

12 t(2)(−1) = −52,
t(2)(7) = −240σ3(1)− 22t(2)(4)− 32t(2)(−1) = −23,
t(2)(8) = −2(t(2)(7) + t(2)(4) + t(2)(−1)) = 152, etc.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we first recall some basic facts on Jacobi forms.
A (holomorphic) Jacobi form of weight k and index p is defined to be a
holomorphic function φ : H×C → C satisfying the two transformation
laws

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke2πip cz2

cτ+d φ(τ, z) (∀
(

a b
c d

)
∈ SL2(Z)),

φ(τ, z + λτ + µ) = e−2πip(λ2τ+2λz)φ(τ, z) (∀ ( λ, µ ) ∈ Z2)

and having a Fourier expansion of the form

(2.1) φ(τ, z) =
∑
n,r∈Z

4pn−r2≥0

c(n, r)qnζr (q = e2πiτ , ζ = e2πiz),

where the coefficient c(n, r) depends only on 4pn − r2 if k is even and
p is prime ([1] Theorem 2.2). The holomorphy condition at infinity is
that c(n, r) vanishes unless 4pn − r2 ≥ 0. If we relax the condition
to merely requiring that c(n, r) = 0 if n < 0, we obtain the space
of weak Jacobi forms, denoted J̃k,p. Let J̃∗,∗ be the ring of all weak
Jacobi forms and J̃ev,∗ its even weight subring. Then J̃ev,∗ is the free
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polynomial algebra over M∗(Γ) on two generators a = φ̃−2,1(τ, z) ∈ J̃−2,1

and b = φ̃0,1(τ, z) ∈ J̃0,1 (see [1, §9]). Here M∗(Γ) denotes the ring of
all modular forms on Γ, which is generated by Eisenstein series E4(τ) =
1 + 240

∑
n σ3(n)qn and E6(τ) = 1− 504

∑
n σ5(n)qn.

According to [3, §8] there is a Jacobi form φ(2) ∈ J̃2,2 uniquely char-
acterized by the requirement that it has Fourier coefficients c(n, r) =
B(2)(8n − r2) which depend only on the discriminant 8n − r2, with
B(2)(0) = −2, B(2)(−1) = 1, B(2)(d) = 0 for d < −1. In particu-
lar, the Fourier development of φ(2) begins (ζ − 2 + ζ−1) + O(q). The
representation of the form φ(2) in terms of the generators a and b are
φ(2) = 1

12a(E4b − E6a). Moreover Zagier’s trace formula in higher level
cases [3, Theorem 8] says that

(2.2) t(2)(d) = −B(2)(d).

Consider Dν : J̃k,m → Mk+ν defined by

D0(φ) =
∑

n

(
∑

r

c(n, r))qn

D2(φ) =
∑

n

(
∑

r

(kr2 − 2nm)c(n, r))qn

D4(φ) =
∑

n

(
∑

r

((k + 1)(k + 2)r4 − 12(k + 1)r2nm + 12n2m2)c(n, r))qn

(see [1, §3]). Now we fix k = 2, m = 2 and φ = φ(2). Since M2 = {0},
M4 = CE4 and M6 = CE6, we obtain that D0(φ(2)) = 0, D2(φ(2)) = c·E4

and D4(φ(2)) = c′ · E6 for some constants c and c′. Thus we have

(2.3) D0(φ(2)) =
∑

n

(
∑
r∈Z

r2≤8n+1

B(2)(8n− r2))qn = 0

D2(φ(2)) =
∑

n

(
∑
r∈Z

r2≤8n+1

(2r2 − 4n)B(2)(8n− r2))qn

= c(1 + 240
∑

n

σ3(n)qn)
(2.4)

D4(φ(2)) =
∑

n

(
∑
r∈Z

r2≤8n+1

(12r4 − 72r2n + 48n2)B(2)(8n− r2))qn

= c′(1− 504
∑

n

σ5(n)qn)
(2.5)
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By comparing the constants terms in the above equations (2.4) and
(2.5) we get c = 2 ·2 ·B(2)(−1) = 4 and c′ = 2 ·12 ·B(2)(−1) = 24. Now if
we compare the coefficients of qn (n ≥ 1) in (2.3), (2.4) and (2.5), then
we have for all n ≥ 1,

B(2)(8n) + 2
∑

1≤r≤
√

8n+1

B(2)(8n− r2) = 0(2.6)

∑
1≤r≤

√
8n+1

r2B(2)(8n− r2) = 240σ3(n) by (2.3) and (2.4)(2.7)

∑
1≤r≤

√
8n+1

(r4 − 6r2n)B(2)(8n− r2) = −504σ5(n)

by (2.3) and (2.5)
(2.8)

We can simplify the equation (2.8) by making use of (2.7), that is,

(2.9)
∑

1≤r≤
√

8n+1

r4B(2)(8n− r2) = −504σ5(n) + 1440nσ3(n).

And then if we subtract (2.7) from (2.9) we obtain∑
2≤r≤

√
8n+1

(r4 − r2)B(2)(8n− r2)

= −504σ5(n) + (1440n− 240)σ3(n).
(2.10)

Now we can rewrite the equations (2.10), (2.7) and (2.6) as follows: for
all n ≥ 1,

B(2)(8n− 4) = (120n− 20)σ3(n)− 42σ5(n)

−
∑

3≤r≤
√

8n+1

r4 − r2

12
B(2)(8n− r2)

B(2)(8n− 1) = 240σ3(n)−
∑

2≤r≤
√

8n+1

r2B(2)(8n− r2)

B(2)(8n) = −2
∑

1≤r≤
√

8n+1

B(2)(8n− r2).

Finally by (2.2) the theorem is proved.
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