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RECURSIONS FOR TRACES OF SINGULAR MODULI

CuanG HeoN Kim*

ABSTRACT. We will derive recursion formulas satisfied by the traces
of singular moduli for the higher level modular function.

1. Introduction

Let $ be the complex upper half plane and let I' be the full modular
group PSLy(Z). Since I' acts on $ by linear fractional transformations,
we get the modular curve I'\ $*, as the projective closure of the smooth
affine curve I'\ 9. Since the genus of I'\H* is zero, the function field of
I'\$H* is the rational function field C(j). Here j is the modular invariant
which is uniquely characterized by j(co) = oo, j (71%\/?3) = 0 and
j(v/—1) = 1728. The property j(7 + 1) = j(7) implies that j admits a
Fourier expansion with respect to ¢ = €*™ (7 € §), which is called a
g-series (or g-expansion) as follows:

§(r) =g ' + 744 + 196884 + -+ - .

“Singular values” or “singular moduli” is the classical name for the val-
ues assumed by the modular invariant j(7) (or by other modular func-
tions) when the argument is an imaginary quadratic irrationality. These
values are algebraic numbers and have been studied intensively since the
time of Kronecker and Weber. In [2], formulas for their norms and for
the norms of their differences were obtained. In [3], a result for their
traces and a number of generalizations were also obtained. Let d de-
note a positive integer congruent to 0 or 3 modulo 4. We denote by
Qg the set of positive definite binary quadratic forms @ = [a,b,c] =
aX? 4+ bXY + cY? (a,b,c € Z) of discriminant —d, with usual action
of the modular group I'. To each ) € Q4, we associate its unique root
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ag € 9. Let t(d) be the (weighted) trace of a singular modulus of
discriminant —d, that is,

D)= Y pileq) - Ti)
QeQq/T

Here I'g = {y € ' = PSLy(Z) | Q oy = Q}. In addition we set
t(—1) = —1,t(0) = 2 and t(d) = 0 for d < —1 or d = 1,2 (mod 4).
Zagier’s trace formula [3, Theorem 1] says that the series > ., t(d)q?
(g =€>™7,7 € §) is a modular form of weight 3/2 on I'g(4) (= {( 2}) €
SLy(Z) : 4|c}), holomorphic in $) and meromorphic at cusps. Moreover
he derived a recursion formula for t(d) (see [3, Theorem 2]).

Let To(N)* be the group generated by Io(N) (={(2%) € SL2(Z) :
N|c}) and all Atkin-Lehner involutions W, for e||N. Here e||N denotes
that e|N and (e, N/e) = 1, and W, can be represented by a matrix

ﬁ (. 2 ) with des W, = 1 and z,y, z,w € Z. There are only finitely

many values of N for which I'g(N)* is of genus 0. In particular, if we
let & denote the set of prime values for such N, then

S = {2,3,5,7,11,13,17,19, 23,29, 31,41, 47,59, 71}.

*

For each p € &, let j, be the corresponding Hauptmodul. Let d be
an integer > 0 such that —d is congruent to a square modulo 4p. We
choose an integer 3 (mod 2p) with 32 = —d (mod 4p) and consider the
set Qupg = {[a,b,c] € Q4| a =0 (mod p), b= (mod 2p)} on which
Lo(p) acts. we define the trace t()(d) by

W= 3 |fo<1p>czr*75(%)'

QEQ4,p,3/To(p)

Here are some numerical examples when p = 2: first, we note that j3
can be expressed by means of Dedekind eta functions, that is,

i3(r) = <:((27T))> N + 24 + 4096 (737((2:))>24

gL/ I[,2,(1 —¢"™). Then

t®(4) = 375 (ap, 21}) = —52,t3(7) = j3 (ap,—1,1) = —23,6(8) =
152,t2(12) = *(a222])+g; (aj21)) = —496,t2)(15) =

32 (04[212}) =-1, £(2 )(16) %J (Oé[4 42]) +75 (« ( [2,0,2]) +

In this article we Will derive the following recursion formula for t(?)(d):
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THEOREM 1.1. For all integers n > 1 we have the identities

t)(8n — 4) = —(120n — 20)03(n) + 4205(n)
4 2

-y %t@)(&z —?)
3<r<+8n+1
t?(8n — 1) = —24003(n) — Z 2t (8n — r?)
2<r<y/8n+1
t?(8n) = —2 Z t@®(8n —r?)
1<r<4/8n+1

where o(n) = aso d.

dln

We note that the above recursion determines t(?)(d) completely from
the initial value t(®(—1) = —1:
£2)(4) = —10004(1) + 4205(1) — =324 (1) =
t2)(7) = —24003( ) = 22’0(2 (4 ) )( 1) =—
t2(8) = —2(t2(7) + £ (4) + ( 1)) =152, etC

2. Proof of Theorem 1.1

To prove Theorem 1.1 we first recall some basic facts on Jacobi forms.
A (holomorphic) Jacobi form of weight k and indez p is defined to be a
holomorphic function ¢ : $ x C — C satisfying the two transformation
laws

atr+b =z iy 2 .
oSG ) = Cr ol (v (1)) € SLa(@)

O(ryz+ AT+ p) = 672”1’()‘27”)‘2%(7, z) (V(xw)e€ ZQ)

and having a Fourier expansion of the form

1) = S enn)g'C (g= e, ¢ = e,
4p:f'r€2220

where the coefficient ¢(n,r) depends only on 4pn — r? if k is even and

p is prime ([1] Theorem 2.2). The holomorphy condition at infinity is

that c(n,r) vanishes unless 4pn — r2 > 0. If we relax the condition

to merely requiring that c(n,r) = 0 if n < 0, we obtain the space

of weak Jacobi forms denoted Jkp Let JM be the ring of all weak

Jacobi forms and Jw* its even weight subring. Then jev,* is the free
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polynomial algebra over M, (T') on two generators a = <;3_271(7', 2) € J a1
and b = ¢g1(7,2) € Joi (see [1, §9]). Here M, (T') denotes the ring of
all modular forms on I', which is generated by Eisenstein series Fy(7) =
14240, 03(n)¢™ and Eg(1) =1 —1504) " o5(n)q".

According to [3, §8] there is a Jacobi form ¢() € Jy 5 uniquely char-
acterized by the requirement that it has Fourier coefficients c¢(n,r) =
B®)(8n — r?) which depend only on the discriminant 8n — 2, with
B@(0) = =2, B®(-1) = 1, B®(d) = 0 for d < —1. In particu-
lar, the Fourier development of ¢ begins (¢ — 2 + ¢~1) + O(q). The
representation of the form ¢ in terms of the generators a and b are
¢® = La(Esb — Ega). Moreover Zagier’s trace formula in higher level
cases [3, Theorem 8] says that

(2.2) t@(d) = =B (d).
Consider D, : jkm — My, defined by

Do(¢) =D (D eln,r))d"

Da(¢) =Y (O _(kr* = 2nm)c(n, r))q"
Dy(9) = Z(Z((k‘ + 1) (k + 2)r* —12(k 4+ 1)r*nm + 12n°m?)c(n, r))¢"

(see [1, §3]). Now we fix k = 2, m = 2 and ¢ = ¢). Since My = {0},
My = CE, and Mg = CEg, we obtain that Do(¢(?)) = 0, Da(¢?) = ¢-Ey
and Dy(¢?) = ¢ - Eg for some constants ¢ and ¢’. Thus we have

(2.3) Do(¢?) =Y (> B@Bn—1")q" =0
Da(¢P) => (> (2r* —4n)BP(8n —1?))q"
(2‘4) " r2£§§+1
=¢(1+240) a3(n)q")
Dy(¢®) =>"( > (12r* — 72r*n + 48n*) B (8n — 1?))q"
(2.5) " TQ;ETZL-H

=d(1-504) a5(n)q")
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By comparing the constants terms in the above equations (2.4) and
(2.5) we get ¢ = 2-2- B@(—1) =4 and ¢ = 2-12- B®)(~1) = 24. Now if
we compare the coefficients of ¢" (n > 1) in (2.3), (2.4) and (2.5), then
we have for all n > 1,

(2.6) B®@n)+2 > BP@Bn-r?)=0
1<r<+/8n+1
(2.7) > ?B®(8n —r?) = 24003(n) by (2.3) and (2.4)
1<r<v8n+1

(r* — 6r2n) B® (8n — r?) = —50405(n)
(2.8) 1<r<y/8n+1
by (2.3) and (2.5)

We can simplify the equation (2.8) by making use of (2.7), that is,

(2.9) > B (8n —r?) = —50405(n) + 1440n03(n).
1<r<v8n+1
And then if we subtract (2.7) from (2.9) we obtain
>t =r)B®@Bn -7

(2.10) 2<r</Bn+1
= —50405(n) + (14400 — 240)03(n).

Now we can rewrite the equations (2.10), (2.7) and (2.6) as follows: for
alln > 1,

B®)(8n — 4) = (120n — 20)03(n) — 4205(n)
4 .2
Y TR )

12
3<r<y/8n+1
B®(8n —1) = 24003(n) — Y r’BP(8n —1?)
2<r<4/8n+1
B?(8n) = —2 B®(8n —r?).
1<r<+/8n+1

Finally by (2.2) the theorem is proved.



188 Chang Heon Kim

References

[1] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55,
Bikh&user-Verlag, Boston-Basel-Stuttgart, 1985.

[2] B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math., 355 (1985),
191-220.

[3] D. Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory,
Part I (Irvine, CA, 1998) (2002), Int. Press Lect. Ser., 3, I, Int. Press, Somerville,
MA, 211-244.

*

Department of Mathematics
Seoul Women’s University

Seoul 139-774, Republic of Korea
E-mail: chkim@swu.ac.kr



