SOME PROPERTIES OF THE SPACE OF FUZZY BOUNDED LINEAR OPERATORS

IN AH HWANG* AND GIL SEOB RHIE**

ABSTRACT. In this paper, we will show that $(CF(X,K),\chi_{\|\cdot\|})$ is a fuzzy Banach space using that the dual space X^* of a normed linear space X is a crisp Banach space. And for a normed linear space Y instead of a scalar field K, we obtain $(CF(X,Y),\rho^*)$ is a fuzzy Banach space under the some conditions.

1. Introduction and preliminaries

Katsaras and Liu [3] introduced the notions of fuzzy vector spaces and fuzzy topological vector spaces. These ideas were modified by Katsaras [1] and Katsaras defined the fuzzy norm on a vector space in [2]. In [4] Krishna and Sarma discussed the generation of a fuzzy vector topology from an ordinary vector topology on a vector space. Also Krishna and Sarma [5] observed the convergence of sequence of fuzzy points. Rhie, Choi and Kim [8] introduced the notion of the fuzzy α -Cauchy sequence of fuzzy points and the fuzzy completeness.

In this paper, we investigate a fuzzification of some theorems relative to a dual vector space.

Now, we explain some basic definitions and results from [1], [2], [3]. Let X be a nonempty set. A fuzzy set in X is an element of the set I^X of all functions from X into the unit interval I. χ_A denotes the characteristic function of the set A. If f is a function from X into Y and $\mu \in I^Y = \{\mu \mid \mu : Y \to [0,1]\}$, then $f^{-1}(\mu)$ is the fuzzy set in X defined by $f^{-1}(\mu) = \mu \circ f$. Also, for $\rho \in I^X$, $f(\rho)$ is the member

Received May 19, 2008; Accepted August 14, 2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 54A40.

Key words and phrases: fuzzy norm, fuzzy $\alpha\textsc{-}\mbox{Cauchy sequence},$ fuzzy continuous, fuzzy Banach space .

^{*}This paper was supported by Hannam University in 2007.

of I^Y which is defined by

$$f(\rho)(y) = \left\{ \begin{array}{ll} \vee \{\rho(x) \mid \ x \in f^{-1}(y)\} & \text{if} \ \ f^{-1}(y) \neq \ \emptyset \\ 0 & \text{otherwise.} \end{array} \right.$$

The symbols \vee and \wedge are used for the supremum and infimum of the family respectively. And we denote the support of $\mu \in I^X$ by

$$supp \mu = \{ x \in X \mid \mu(x) > 0 \}.$$

Let X be a vector space over K, where K denotes either the set of all the real or the complex numbers. Let $\mu_1, \mu_2, \dots, \mu_n \in I^X$. The fuzzy set $\mu = \mu_1 \times \mu_2 \times \dots \times \mu_n$ in X^n , is defined by

$$\mu(x_1, x_2, \cdots, x_n) = \mu_1(x_1) \wedge \mu_2(x_2) \wedge \cdots \wedge \mu_n(x_n).$$

DEFINITION 1.1. ([3]) $f: X^n \to X$, given by $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$, then the fuzzy set $f(\mu)$ in X is called the *sum of the fuzzy sets* $\mu_1, \mu_2, \dots, \mu_n$, and it is denoted by $\mu_1 + \mu_2 + \dots + \mu_n$. That is

$$(\mu_1 + \mu_2 + \dots + \mu_n)(x)$$

= $\vee \{\mu_1(x_1) \wedge \mu_2(x_2) \wedge \dots \wedge \mu_n(x_n) \mid x = x_1 + x_2 + \dots + x_n\}.$

DEFINITION 1.2. ([3]) Let X be a vector space. For $\mu \in I^X$ and t a scalar, the fuzzy set $t\mu$ is the image of μ under the map $g: X \to X$, g(x) = tx, that is if $\mu \in I^X$ and $t \in K$, then

$$(t\mu)(x) = \begin{cases} \mu(x/t) & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \text{ and } x \neq 0 \\ \vee \{\mu(y) \mid y \in X\} & \text{if } t = 0 \text{ and } x = 0. \end{cases}$$

DEFINITION 1.3. ([3]) A subfamily τ of I^X is said to be a fuzzy topology on a set X if,

- 1. τ contains every constant fuzzy set in X,
- 2. if $\mu_1, \mu_2 \in \tau$, then $\mu_1 \wedge \mu_2 \in \tau$,
- 3. if for each $\{\mu_i\}_i \subset \tau$, then $\forall_i \mu_i \in \tau$.

A fuzzy topological space is a set X equipped with a fuzzy topology τ , denote (X, τ) . The elements of τ are called the *open fuzzy sets* in X.

DEFINITION 1.4. ([1]) A map f from a fuzzy topological space X to a fuzzy topological space Y, is said to be fuzzy continuous if $f^{-1}(\mu)$ is fuzzy open in X for each open fuzzy set μ in Y.

DEFINITION 1.5. ([2]) A fuzzy linear topology on a vector space X over K is a fuzzy topology on X such that the two mappings

$$\begin{array}{lll} + & : & X \times X \to X, & (x,y) \to x + y \\ \cdot & : & K \times X \to X, & (t,x) \to tx \end{array}$$

are continuous when K has the fuzzy usual topology and $K \times X$ and $X \times X$ have the corresponding product fuzzy topologies. A linear space with a fuzzy linear topology is called a fuzzy topological vector space.

DEFINITION 1.6. ([2]) $\mu \in I^X$ is said to be

- 1. convex if $t\mu + (1-t)\mu \subseteq \mu$ for each $t \in [0,1]$
- 2. balanced if $t\mu \subseteq \mu$ for each $t \in K$ with $|t| \leq 1$
- 3. absolutely convex if μ is convex and balanced
- 4. absorbing if $\forall \{t\mu(x) \mid t > 0\} = 1$ for all $x \in X$.

DEFINITION 1.7. ([2]) fuzzy seminorm on X is a fuzzy set ρ in X which is absolutely convex and absorbing. If in addition $\land \{(t\rho)(x) \mid t > 0\} = 0$ for $x \neq 0$, then ρ is called a fuzzy norm.

THEOREM 1.8. ([1]) If ρ is a fuzzy seminorm on X, then the family $B_{\rho} = \{\theta \wedge (t\rho) \mid 0 < \theta \leq 1, \ t > 0\}$ is a base at zero for a fuzzy linear topology τ_{ρ} .

DEFINITION 1.9. ([2]) Let ρ be a fuzzy seminorm on a linear space. The fuzzy topology τ_{ρ} in Theorem 1.8 is called the fuzzy topology induced by the fuzzy seminorm ρ . And a linear space equipped with a fuzzy seminorm (resp. fuzzy norm) is called a fuzzy seminormed (resp. fuzzy normed) linear space.

THEOREM 1.10. ([1]) The fuzzy seminorms ρ_1, ρ_2 on a linear space X are equivalent if and only if for each $\theta \in (0,1)$, there exists t > 0 such that $\theta \wedge \rho_1(tx) \leq \rho_2(x)$ and $\theta \wedge \rho_2(tx) \leq \rho_1(x)$ for all $x \in X$.

Definition 1.11. ([2]) A fuzzy set $\mu \in I^X$ is called a fuzzy point iff

$$\mu(z) = \left\{ \begin{array}{ll} \alpha & \quad & \text{if } z = x, \\ 0 & \quad & \text{otherwise,} \end{array} \right.$$

where $\alpha \in (0,1)$. We denote this fuzzy point with support x and value α by (x,α) .

2. Main theorem

DEFINITION 2.1. [8] Let $\alpha \in (0,1)$. A sequence of fuzzy points $\{\mu_n = (x_n, \alpha_n)\}$ is said to be a fuzzy α -Cauchy sequence in a fuzzy normed linear space (X, ρ) if for each neighborhood N of 0 with $N(0) > \alpha$, there exists a positive integer M such that $n, m \geq M$ implies $\mu_n - \mu_m = (x_n - x_m, \alpha_n \wedge \alpha_m) \leq N$. A fuzzy normed linear space (X, ρ) is said to be fuzzy α -complete if every fuzzy α -Cauchy sequence $\{\mu_n\}$ converges to a fuzzy point $\mu = (x, \alpha)$ (refer to Definition 2.13 of [5]). (X, ρ) is said to be fuzzy complete if it is fuzzy α -complete for every $\alpha \in (0, 1)$. A fuzzy complete fuzzy normed linear space is said to be a fuzzy Banach space.

DEFINITION 2.2. [1] If ρ is a fuzzy seminorm on X, then for every $\epsilon \in (0,1), P_{\epsilon}: X \to R_{+}$ is defined by

$$P_{\epsilon}(x) = \wedge \{t > 0 \mid t\rho(x) > \epsilon\}$$

and for every $x \in X$, $P_{\alpha^{-}}: X \to R_{+}$ is also defined by

$$P_{\alpha^{-}}(x) = \bigvee \{P_{\epsilon}(x) \mid \epsilon < \alpha\}.$$

THEOREM 2.3. [1] The P_{ϵ} in Definition 2.2 is a seminorm on X. Further P_{ϵ} is a norm on X for each $\epsilon \in (0,1)$ if and only if ρ is a fuzzy norm on X.

DEFINITION 2.4. [5] Let (X, ρ_1) , (Y, ρ_2) be fuzzy normed linear spaces and CF(X,Y) be the linear space of all fuzzy continuous linear maps from (X, ρ_1) to (Y, ρ_2) . For each $\theta \in (0,1)$, $t_{\theta} : CF(X,Y) \to R_+$ is defined by

$$t_{\theta}(f) = \wedge \{s > 0 \mid \rho_2(f(x)) \geq \theta \wedge \rho_1(sx) \text{ for all } x \in X\}.$$

We write $t_{\theta}(f) = t(\theta, f)$. And the fuzzy norm $\rho^* : CF(X, Y) \to [0, 1]$ is defined by $\rho^*(f) = \bigvee_{\theta \in (0, 1)} \{\theta \wedge 1/[t(\theta, f)]\}$, for any $f \in CF(X, Y)$.

LEMMA 2.5. Let $(X, \|\cdot\|)$ be a normed linear space. If $\rho = \chi_B$, where B is the closed unit ball of X, then for each $\epsilon \in (0,1)$, $P_{\epsilon}(x) = \|x\|$ for all $x \in X$.

Proof. For all $x \in X$, $\epsilon \in (0,1)$,

$$\begin{split} P_{\epsilon}(x) &= & \wedge \{s > 0 \mid s\rho(x) > \epsilon\} \\ &= & \wedge \{s > 0 \mid \rho(x/s) > \epsilon\} \\ &= & \wedge \{s > 0 \mid \rho(x/s) = 1\} \qquad \text{as} \qquad \rho = \chi_B \\ &= & \wedge \{s > 0 \mid \parallel x/s \parallel \leq 1\} \qquad \text{as} \qquad x/s \in B \\ &= & \wedge \{s > 0 \mid \parallel x \parallel \leq s\} \\ &= & \parallel x \parallel . \end{split}$$

THEOREM 2.6. Let $(X, \|\cdot\|)$ be a normed linear space over $(K, |\cdot|)$. Then $(CF(X,K), \chi_{\|\cdot\|})$ is fuzzy Banach space, where $\rho_1 = \chi_{\|\cdot\|}, \, \rho_2 = \chi_{|\cdot|}$ and $\| x^* \| = \vee \{ |x^*(x)| \mid P^1_{\epsilon}(x) = 1, \, x \in X \}$

Proof. Since we have that for each $\epsilon \in (0,1)$,

$$\begin{array}{ll} P_{\epsilon}^{1}(x) = \parallel x \parallel & \text{for each } x \in X \\ P_{\epsilon}^{2}(y) = \mid y \mid & \text{for each } y \in K. \end{array}$$

Since $(X, \|\cdot\|)$, $(K, |\cdot|)$ are normed linear space, (X, ρ_1) , (K, ρ_2) are fuzzy normed linear space. Thus

$$X^* = \{x^* | x^* : (X, \| \cdot \|) \to (K, | \cdot |) \text{ is continuous and linear } \}$$

= $\{x^* | x^* : (X, \rho_1) \to (K, \rho_2) \text{ is fuzzy continuous and linear } \}$
= $CF(X, K)$

Since $(X^*, \| \cdot \|)$ is Banach space, where $\| x^* \| = \forall \{ | x^*(x) | | x \in X, P_{\epsilon}^1(x) = 1 \}, (X^*, \chi_{\| \cdot \|})$ is fuzzy complete. Consequently $(CF(X, K), \chi_{\| \cdot \|})$ is fuzzy complete. This completes the proof.

DEFINITION 2.7. [2] Two fuzzy seminorms ρ_1, ρ_2 on X are said to be equivalent if $\tau_{\rho_1} = \tau_{\rho_2}$.

PROPOSITION 2.8. [8] Let $(X, \| \cdot \|)$ be a normed linear space. If ρ be a lower semi-continuous fuzzy norm on X, and have the bounded support: $\{x \in X | \rho(x) > 0\}$ is bounded, then ρ is equivalent to the fuzzy norm χ_B where B is the closed unit ball of X.

THEOREM 2.9. Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be two normed linear spaces over the field K. If $f: (X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$ is continuous and linear . Then $f: (X, \rho_1) \to (Y, \rho_2)$ is fuzzy continuous, where $\rho_1 = \chi_{\|\cdot\|_1}$ and $\rho_2 = \chi_{\|\cdot\|_2}$

Proof. Let $\theta \in (0,1)$. We have to show that there exists $t = t(\theta) > 0$ such that $\rho_2(f(x)) \geq \theta \wedge \rho_1(tx)$ for all $x \in X$. Equivalently $||tx||_1 \leq 1$ implies $||f(x)||_2 \leq 1$. Let $t_{\theta}(f) = \wedge \{s > 0 | ||f(x)||_2 \leq s ||x||_1$, $x \in X\} = |||f|||$. Now, suppose that $||f(x)||_2 > 1$. Then since $||f(x)||_2 \leq |||f||| \cdot ||x||_1$ for each $x \in X$, $1 < ||f(x)||_2 \leq |||f|| \cdot ||x||_1$ for each $x \in X$. Thus $||tx||_1 = |t| \cdot ||x||_1 = ||f||| \cdot ||x||_1 > 1$.

THEOREM 2.10. Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be two normed linear spaces. If (Y, ρ_2) be a fuzzy complete, where $\rho_1 = \chi_{\|\cdot\|_1}$, $\rho_2 = \chi_{\|\cdot\|_2}$ and ρ_2 is lower semi continuous and has the bounded support, then $(CF(X,Y), \rho^*)$ is fuzzy complete, where $\rho^* = \chi_{\|\cdot\|}$, $\| x^* \| = \bigvee \{P_{\epsilon}^2(x^*(x)) \mid P_{\epsilon}^1(x) = 1, x \in X\}$.

Proof. From [5] and above Theorem 2.9, we have that

$$CF(X,Y) = \{f|f: (X,\rho_1) \to (Y,\rho_2) \text{ is fuzzy continuous and linear }\}$$

= $\{f|f: (X,P_{\epsilon}^1) \to (Y,P_{\epsilon}^2) \text{ is continuous and linear for each } \epsilon \in (0,1)\}$
= $\{f|f: (X,\|\cdot\|_1) \to (Y,\|\cdot\|_2) \text{ is continuous and linear }\}$
= $L(X,Y)$

,where

$$\begin{array}{ll} \parallel T \parallel \ \, = \vee \{P^2_{\epsilon}(T(x))| \ \, P^1_{\epsilon}(x) = 1, \, x \in X\} \\ = \vee \{\parallel T(x) \parallel_2 \ \, | \ \, P^1_{\epsilon}(x) = 1, \, x \in X\}, \quad \, T \in L(X,Y). \end{array}$$

And since (Y, ρ_2) fuzzy complete, for each $\alpha \in (0,1)$, α -Cauchy sequence $(T_n(x), \alpha_n)$ converges to $(T(x), \alpha)$. Thus $T_n(x)$ converges to T(x). Now we will show that $(CF(X,Y), \rho^*)$ is fuzzy complete. Let $\{T_n\} \subseteq CF(X,Y)$ is a fuzzy α -Cauchy sequence for each $\alpha \in (0,1)$, that is for each t > 0, there exists a positive integer M such that $n, m \geq M$ implies $\alpha_n \wedge \alpha_m \leq \alpha$ and $P^-_{(\alpha_n \wedge \alpha_m)}(x_n - x_m) < t$. Then $T_n: (X, \rho_1) \to (Y, \rho_2)$ is a fuzzy continuous and linear. Thus, by Theorem 4.9 [5] for each $\epsilon \in (0,1)$, $T_n: (X, P^1_{\epsilon}) \to (Y, P^2_{\epsilon})$ is a crisp continuous and linear. Hence T_n is a bounded and linear. And since $T_n - T_m$ is bounded, it deduce that

$$P_{\epsilon}^{2}(T_{n}(x) - T_{m}(x)) \leq \parallel T_{n} - T_{m} \parallel P_{\epsilon}^{1}(x)$$

$$= P_{(\alpha_{n} \wedge \alpha_{m})^{-}}(T_{n} - T_{m})P_{\epsilon}^{1}(x)$$

$$< tP_{\epsilon}^{1}(x)$$

Therefore, $\{T_n(x)\}\$ is a crisp Cauchy sequence in (Y, P_{ϵ}^2) .

Since $\rho_2 = \chi_{\|\cdot\|_2}$ is lower semi continuous and has the bounded support, $(Y, \|\cdot\|_2)$ is a crisp complete. It mean that $(L(X, Y), \|\|\cdot\|\|)$ is a crisp Banach space by Theorem 3.2.2 [7]. Hence $(CF(X, Y), \|\|\cdot\|\|)$ is

a crisp Banach space. Consequently, $(CF(X,Y),\chi_{\|\cdot\|})$ is fuzzy Banach space. This completes the proof.

Theorem 2.11. Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be two normed linear spaces over the field $K, X \neq \{\theta\}$. If $(CF(X,Y), \rho^*)$ be fuzzy Banach space, where $\rho^* = \chi_{\|\cdot\|}$ is lower semi continuous and has the bounded support, $\|\|f\| = \forall \{\|f(x)\|_2 \mid x \in X, \|x\|_1 = 1\}$. Then $(Y, \chi_{\|\cdot\|_2})$ is fuzzy Banach space.

Proof. Since $(CF(X,Y), \rho^*)$ be fuzzy Banach space and ρ^* is lower semi continuous and has the bounded support, $(CF(X,Y), \| \cdot \|)$ is crisp Banach space. It follows that $(Y, \| \cdot \|_2)$ is crisp Banach space from [7]. Consequently, $(Y, \chi_{\|\cdot\|_2})$ is fuzzy Banach space.

References

- A. K. Katsaras, Fuzzy topological vector space I, Fuzzy sets and systems 6 (1981), 85-95.
- [2] A. K. Katsaras, Fuzzy topological vector space II, Fuzzy sets and systems 12 (1984), 143-154.
- [3] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146.
- [4] S. V. Krishna and K. K. M. Sarma, Fuzzy topological vector spaces topological generation and normability, Fuzzy sets and systems 41 (1991), 89-99.
- [5] S. V. Krishna and K. K. M. Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy sets and systems 45 (1992), 341-354.
- [6] S. V. Krishna and K. K. M. Sarma, Seperation of fuzzy normed linear spaces, Fuzzy sets and systems 63 (1994), 207-217.
- [7] R. Larsen, Functional analysis, Marcel Dekker, Inc. New york, 1973.
- [8] G. S. Rhie and B. M. Choi and D. S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japonica 45, (1997), no. 1, 33-37.
- [9] G. S. Rhie and I. A. Hwang, On the fuzzy Hahn-Banach Theorem-an analytic form, Fuzzy sets systems **108** (1999), 117-121.

*

Department of Mathematics Education Hannam University Daejon 306-791, Republic of Korea E-mail: hia@hnu.kr

**

Department of Mathematics Hannam University Daejon 306-791, Republic of Korea *E-mail*: gsrhie@hanmail.net