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SOME PROPERTIES OF THE SPACE OF FUZZY
BOUNDED LINEAR OPERATORS

In Ah Hwang* and Gil Seob Rhie**

Abstract. In this paper, we will show that (CF (X, K), χ‖|·‖|) is
a fuzzy Banach space using that the dual space X∗ of a normed
linear space X is a crisp Banach space. And for a normed linear
space Y instead of a scalar field K , we obtain (CF (X, Y ), ρ∗) is a
fuzzy Banach space under the some conditions.

1. Introduction and preliminaries

Katsaras and Liu [3] introduced the notions of fuzzy vector spaces and
fuzzy topological vector spaces. These ideas were modified by Katsaras
[1] and Katsaras defined the fuzzy norm on a vector space in [2]. In [4]
Krishna and Sarma discussed the generation of a fuzzy vector topology
from an ordinary vector topology on a vector space. Also Krishna and
Sarma [5] observed the convergence of sequence of fuzzy points. Rhie,
Choi and Kim [8] introduced the notion of the fuzzy α-Cauchy sequence
of fuzzy points and the fuzzy completeness.

In this paper, we investigate a fuzzification of some theorems relative
to a dual vector space.

Now, we explain some basic definitions and results from [1], [2], [3].
Let X be a nonempty set. A fuzzy set in X is an element of the set
IX of all functions from X into the unit interval I. χA denotes the
characteristic function of the set A. If f is a function from X into Y
and µ ∈ IY = {µ | µ : Y → [0, 1]}, then f−1(µ) is the fuzzy set in
X defined by f−1(µ) = µ ◦ f . Also, for ρ ∈ IX , f(ρ) is the member
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of IY which is defined by

f(ρ)(y) =
{
∨{ρ(x) | x ∈ f−1(y)} if f−1(y) 6= ∅
0 otherwise.

The symbols ∨ and ∧ are used for the supremum and infimum of the
family respectively. And we denote the support of µ ∈ IX by

suppµ = {x ∈ X | µ(x) > 0}.

Let X be a vector space over K, where K denotes either the set of
all the real or the complex numbers. Let µ1, µ2, · · · , µn ∈ IX . The fuzzy
set µ = µ1 × µ2 × · · · × µn in Xn, is defined by

µ(x1, x2, · · · , xn) = µ1(x1) ∧ µ2(x2) ∧ · · · ∧ µn(xn).

Definition 1.1. ([3]) f : Xn → X, given by f(x1, x2, · · · , xn) =
x1 +x2 + · · ·+xn, then the fuzzy set f(µ) in X is called the sum of the
fuzzy sets µ1, µ2, · · · , µn, and it is denoted by µ1 + µ2 + · · ·+ µn. That
is

(µ1 + µ2 + · · ·+ µn)(x)
= ∨{µ1(x1) ∧ µ2(x2) ∧ · · · ∧ µn(xn) | x = x1 + x2 + · · ·+ xn}.

Definition 1.2. ([3]) Let X be a vector space. For µ ∈ IX and t a
scalar, the fuzzy set tµ is the image of µ under the map g : X → X,
g(x) = tx, that is if µ ∈ IX and t ∈ K, then

(tµ)(x) =

 µ(x/t) if t 6= 0
0 if t = 0 and x 6= 0
∨{µ(y) | y ∈ X} if t = 0 and x = 0.

Definition 1.3. ([3] ) A subfamily τ of IX is said to be a fuzzy
topology on a set X if,

1. τ contains every constant fuzzy set in X,
2. if µ1, µ2 ∈ τ , then µ1 ∧ µ2 ∈ τ ,
3. if for each {µi}i ⊂ τ , then ∨iµi ∈ τ .

A fuzzy topological space is a set X equipped with a fuzzy topology
τ , denote (X, τ). The elements of τ are called the open fuzzy sets in X.

Definition 1.4. ([1] ) A map f from a fuzzy topological space X to
a fuzzy topological space Y , is said to be fuzzy continuous if f−1(µ) is
fuzzy open in X for each open fuzzy set µ in Y .
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Definition 1.5. ([2] ) A fuzzy linear topology on a vector space X
over K is a fuzzy topology on X such that the two mappings

+ : X ×X → X, (x, y) → x + y

· : K ×X → X, (t, x) → tx

are continuous when K has the fuzzy usual topology and K × X and
X ×X have the corresponding product fuzzy topologies. A linear space
with a fuzzy linear topology is called a fuzzy topological vector space.

Definition 1.6. ([2] ) µ ∈ IX is said to be

1. convex if tµ + (1− t)µ ⊆ µ for each t ∈ [0, 1]
2. balanced if tµ ⊆ µ for each t ∈ K with | t | ≤ 1
3. absolutely convex if µ is convex and balanced
4. absorbing if ∨{tµ(x) | t > 0} = 1 for all x ∈ X.

Definition 1.7. ([2] ) fuzzy seminorm on X is a fuzzy set ρ in X
which is absolutely convex and absorbing. If in addition ∧{(tρ)(x) | t >
0} = 0 for x 6= 0, then ρ is called a fuzzy norm.

Theorem 1.8. ([1] ) If ρ is a fuzzy seminorm on X, then the family
Bρ = {θ ∧ (tρ) | 0 < θ ≤ 1, t > 0} is a base at zero for a fuzzy linear
topology τρ.

Definition 1.9. ([2] ) Let ρ be a fuzzy seminorm on a linear space.
The fuzzy topology τρ in Theorem 1.8 is called the fuzzy topology induced
by the fuzzy seminorm ρ. And a linear space equipped with a fuzzy
seminorm (resp. fuzzy norm) is called a fuzzy seminormed (resp. fuzzy
normed) linear space.

Theorem 1.10. ([1] ) The fuzzy seminorms ρ1, ρ2 on a linear space
X are equivalent if and only if for each θ ∈ (0, 1), there exists t > 0 such
that θ ∧ ρ1(tx) ≤ ρ2(x) and θ ∧ ρ2(tx) ≤ ρ1(x) for all x ∈ X.

Definition 1.11. ([2] ) A fuzzy set µ ∈ IX is called a fuzzy point iff

µ(z) =
{

α if z = x,
0 otherwise,

where α ∈ (0, 1). We denote this fuzzy point with support x and value
α by (x, α).
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2. Main theorem

Definition 2.1. [8] Let α ∈ (0, 1). A sequence of fuzzy points {µn =
(xn, αn)} is said to be a fuzzy α-Cauchy sequence in a fuzzy normed
linear space (X, ρ) if for each neighborhood N of 0 with N(0) > α,
there exists a positive integer M such that n, m ≥ M implies µn−µm =
(xn − xm, αn ∧ αm) ≤ N . A fuzzy normed linear space (X, ρ) is said to
be fuzzy α-complete if every fuzzy α-Cauchy sequence {µn} converges to
a fuzzy point µ = (x, α) (refer to Definition 2.13 of [5]). (X, ρ) is said to
be fuzzy complete if it is fuzzy α-complete for every α ∈ (0, 1). A fuzzy
complete fuzzy normed linear space is said to be a fuzzy Banach space.

Definition 2.2. [1] If ρ is a fuzzy seminorm on X, then for every
ε ∈ (0, 1), Pε : X → R+ is defined by

Pε(x) = ∧{t > 0 | tρ(x) > ε}

and for every x ∈ X, Pα− : X → R+ is also defined by

Pα−(x) = ∨{Pε(x) | ε < α}.

Theorem 2.3. [1] The Pε in Definition 2.2 is a seminorm on X.
Further Pε is a norm on X for each ε ∈ (0, 1) if and only if ρ is a fuzzy
norm on X.

Definition 2.4. [5] Let (X, ρ1), (Y, ρ2) be fuzzy normed linear spaces
and CF (X, Y ) be the linear space of all fuzzy continuous linear maps
from (X, ρ1) to (Y, ρ2). For each θ ∈ (0, 1), tθ : CF (X, Y ) → R+ is
defined by

tθ(f) = ∧{s > 0 | ρ2(f(x)) ≥ θ ∧ ρ1(sx) for all x ∈ X}.

We write tθ(f) = t(θ, f). And the fuzzy norm ρ∗ : CF (X, Y ) → [0, 1] is
defined by ρ∗(f) = ∨θ∈(0,1){θ ∧ 1/[t(θ, f)]}, for any f ∈ CF (X, Y ).

Lemma 2.5. Let (X, ‖ · ‖) be a normed linear space. If ρ = χB,
where B is the closed unit ball of X, then for each ε ∈ (0, 1), Pε(x) =
‖ x ‖ for all x ∈ X.
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Proof. For all x ∈ X, ε ∈ (0, 1),

Pε(x) = ∧{s > 0 | sρ(x) > ε}
= ∧{s > 0 | ρ(x/s) > ε}
= ∧{s > 0 | ρ(x/s) = 1} as ρ = χB

= ∧{s > 0 | ‖ x/s ‖ ≤ 1} as x/s ∈ B

= ∧{s > 0 | ‖ x ‖ ≤ s}
= ‖ x ‖ .

Theorem 2.6. Let (X, ‖ · ‖) be a normed linear space over (K, | · |).
Then (CF (X, K), χ‖|·‖|)is fuzzy Banach space, where ρ1 = χ‖·‖, ρ2 = χ|·|
and ‖| x∗ ‖|= ∨{| x∗(x) | | P 1

ε (x) = 1, x ∈ X}

Proof. Since we have that for each ε ∈ (0, 1),

P 1
ε (x) = ‖ x ‖ for each x ∈ X

P 2
ε (y) = | y | for each y ∈ K.

Since (X, ‖ · ‖), (K, | · |) are normed linear space, (X, ρ1), (K, ρ2) are
fuzzy normed linear space.Thus

X∗ = {x∗| x∗ : (X, ‖ · ‖) → (K, | · |) is continuous and linear }
= {x∗| x∗ : (X, ρ1) → (K, ρ2) is fuzzy continuous and linear }
= CF (X, K)

Since (X∗, ‖| · ‖|) is Banach space,where ‖| x∗ ‖|= ∨{| x∗(x) | | x ∈
X, P 1

ε (x) = 1}, (X∗, χ‖|·‖|) is fuzzy complete. Consequently (CF (X, K),
χ‖|·‖|) is fuzzy complete. This completes the proof.

Definition 2.7. [2] Two fuzzy seminorms ρ1, ρ2 on X are said to be
equivalent if τρ1 = τρ2 .

Proposition 2.8. [8] Let (X, ‖ · ‖) be a normed linear space. If
ρ be a lower semi-continuous fuzzy norm on X, and have the bounded
support: {x ∈ X| ρ(x) > 0} is bounded, then ρ is equivalent to the
fuzzy norm χB where B is the closed unit ball of X.

Theorem 2.9. Let (X, ‖ · ‖1) and (Y, ‖ · ‖2) be two normed linear
spaces over the field K. If f : (X, ‖ · ‖1) → (Y, ‖ · ‖2) is continuous and
linear . Then f : (X, ρ1) → (Y, ρ2) is fuzzy continuous, where ρ1 = χ‖·‖1

and ρ2 = χ‖·‖2
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Proof. Let θ ∈ (0, 1). We have to show that there exists t = t(θ) > 0
such that ρ2(f(x)) ≥ θ∧ρ1(tx) for all x ∈ X. Equivalently ‖ tx ‖1 ≤ 1
implies ‖ f(x) ‖2 ≤ 1. Let tθ(f) = ∧{s > 0| ‖ f(x) ‖2 ≤ s ‖ x ‖1

, x ∈ X} = ‖| f ‖|. Now, suppose that ‖ f(x) ‖2 > 1. Then since
‖ f(x) ‖2 ≤ ‖| f ‖| · ‖ x ‖1 for each x ∈ X, 1 < ‖ f(x) ‖2 ≤ ‖| f ‖| · ‖ x ‖1

for each x ∈ X. Thus ‖ tx ‖1= |t|· ‖ x ‖1=‖| f ‖| · ‖ x ‖1 > 1.

Theorem 2.10. Let (X, ‖ · ‖1) and (Y, ‖ · ‖2) be two normed lin-
ear spaces. If (Y, ρ2) be a fuzzy complete, where ρ1 = χ‖·‖1

, ρ2 =
χ‖·‖2

and ρ2 is lower semi continuous and has the bounded support,
then (CF (X, Y ), ρ∗) is fuzzy complete, where ρ∗ = χ‖|·‖|, ‖| x∗ ‖|=
∨{P 2

ε (x∗(x)) | P 1
ε (x) = 1, x ∈ X}.

Proof. From [5] and above Theorem 2.9, we have that

CF (X, Y ) = {f |f : (X, ρ1) → (Y, ρ2) is fuzzy continuous and linear }
= {f |f : (X, P 1

ε ) → (Y, P 2
ε ) is continuous and linear for each ε ∈ (0, 1)}

= {f |f : (X, ‖ · ‖1) → (Y, ‖ · ‖2) is continuous and linear }
= L(X, Y )

,where

‖| T ‖| = ∨{P 2
ε (T (x))| P 1

ε (x) = 1, x ∈ X}
= ∨{‖ T (x) ‖2 | P 1

ε (x) = 1, x ∈ X}, T ∈ L(X, Y ).

And since (Y, ρ2) fuzzy complete, for each α ∈ (0, 1), α-Cauchy
sequence (Tn(x), αn) converges to (T (x), α). Thus Tn(x) converges to
T (x). Now we will show that (CF (X, Y ), ρ∗) is fuzzy complete. Let
{Tn} ⊆ CF (X, Y ) is a fuzzy α-Cauchy sequence for each α ∈ (0, 1),
that is for each t > 0, there exists a positive integer M such that
n, m ≥ M implies αn ∧ αm ≤ α and P−

(αn∧αm)(xn − xm) < t.Then
Tn : (X, ρ1) → (Y, ρ2) is a fuzzy continuous and linear. Thus, by Theo-
rem 4.9 [5] for each ε ∈ (0, 1), Tn : (X, P 1

ε ) → (Y, P 2
ε ) is a crisp contin-

uous and linear. Hence Tn is a bounded and linear. And since Tn − Tm

is bounded, it deduce that

P 2
ε (Tn(x)− Tm(x)) ≤ ‖| Tn − Tm ‖| P 1

ε (x)
= P(αn∧αm)−(Tn − Tm)P 1

ε (x)
< tP 1

ε (x)

Therefore, {Tn(x)} is a crisp Cauchy sequence in (Y, P 2
ε ).

Since ρ2 = χ‖·‖2
is lower semi continuous and has the bounded sup-

port, (Y, ‖ · ‖2) is a crisp complete. It mean that (L(X, Y ), ‖| · ‖|) is a
crisp Banach space by Theorem 3.2.2 [7]. Hence (CF (X, Y ), ‖| · ‖|) is
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a crisp Banach space. Consequently, (CF (X, Y ), χ‖|·‖|) is fuzzy Banach
space. This completes the proof.

Theorem 2.11. Let (X, ‖ · ‖1) and (Y, ‖ · ‖2)be two normed linear
spaces over the field K, X 6= {θ}. If (CF (X, Y ), ρ∗) be fuzzy Banach
space, where ρ∗ = χ‖|·‖| is lower semi continuous and has the bounded
support, ‖| f ‖|= ∨{‖ f(x) ‖2 | x ∈ X, ‖ x ‖1= 1}. Then (Y, χ‖·‖2

) is
fuzzy Banach space.

Proof. Since (CF (X, Y ), ρ∗) be fuzzy Banach space and ρ∗ is lower
semi continuous and has the bounded support, (CF (X, Y ), ‖| · ‖|) is
crisp Banach space. It follows that (Y, ‖ · ‖2) is crisp Banach space from
[7]. Consequently, (Y, χ‖·‖2

) is fuzzy Banach space.
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