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THE GENERALIZED HYERS-ULAM-RASSIAS
STABILITY OF A CUBIC FUNCTIONAL EQUATION

Heejeong Koh*

Abstract. In this paper, we obtain the general solution, the gen-
eralized Hyers-Ulam-Rassias stability, and the stability by using the
alternative fixed point for a cubic functional equation

4f(x+my)+4f(x−my)+m2f(2x) = 8f(x)+4m2f(x+y)+4m2f(x−y)

for a positive integer m ≥ 2 .

1. Introduction

The study of stability problems for functional equations is related to
the following question originated by Ulam [14] concerning the stability
of group homomorphisms: Let G1 be a group and let G2 be a metric
group with the metric d(·, ·) . Given ε > 0 does there exist a δ > 0 such
that if a mapping h : G1 → G2 satisfies the inequality

d(h(xy), h(x)h(y)) < δ

for all x, y ∈ G1 , then a homomorphism H : G1 → G2 exists with
d(h(x), H(x)) < ε for all x ∈ G1 ?

The first partial solution to Ulam’s question was provided by D. H.
Hyers [5]. Thirty seven years after Hyers’s Theorem, Th. M. Rassias
in his paper provided a remarkable generalization of Hyers’s result by
allowing for the first time in the subject of functional equations and
inequalities the Cauchy difference to be unbounded; see [8]. This fact
rekindled interest of several mathematicians worldwide in the study of
several important functional equations of several variables. Gǎvruta [4]
following Rassias’s approach for the unbounded Cauchy difference pro-
vided a further generalization.
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The quadratic function f(x) = cx2 (c ∈ R) satisfies the functional
equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) .(1.1)

This question is called the quadratic functional equation, and every so-
lution of the equation (1.1) is called a quadratic function. In fact, a
function f : X → Y is a solution of the equation (1.1) if and only if
there exists a bilinear function B : X×X → Y such that f(x) = B(x, x)
for all x ∈ X .

A Hyers-Ulam stability theorem for the quadratic functional equation
(1.1) was first proved by Skof [13] for functions f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [1] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
abelian group. In [3], Czerwik proved the Hyers-Ulam-Rassias stability
of the quadratic functional equation. Several functional equations have
been investigated; see [9], [10], and [11].

The cubic function f(x) = cx3 (c ∈ R) satisfies the functional equa-
tion

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) .(1.2)

The equation (1.2) was solved by Jun and Kim [6]. Similar to a quadratic
functional equation, actually, they proved that a function f : X → Y
is a solution of the equation (1.2) if and only if there exists a function
F : X × X × X → Y such that f(x) = F (x, x, x) for all x ∈ X ,
and F is symmetric for each fixed one variable and is additive for fixed
two variables; see [6]. We promise that by a cubic function we mean
every solution of the equation (1.2) is called a cubic function. Also, the
equation (1.2) is equivalent to the following equation (see [2, Lemma
2.1]);

(1.3) f(x+ 2y) + f(x− 2y) + f(2x) = 2f(x) + 4f(x+ y) + 4f(x− y) .

In this paper, we will investigate the generalized Hyers-Ulam-Rassias
stability and the stability by using the alternative fixed point for a cubic
functional equation as follows:

(1.4) 4f(x+my) + 4f(x−my) +m2f(2x)

= 8f(x) + 4m2f(x+ y) + 4m2f(x− y)

for all x, y ∈ X , where m ≥ 2 is an integer number.
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2. Cubic functional equation

Lemma 2.1. Let X and Y be real vector spaces. A function f :
X → Y satisfies the functional equation (1.4) if and only if f is cubic.
Therefore, every solution of functional equations (1.4) is also a cubic
function.

Proof. Suppose f satisfies the equation (1.3). It is easy to show that
f(2x) = 8f(x) , for all x ∈ X . Hence the equation (1.3) is equivalent to

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) .

By letting x = x+ y and x = x− y respectively, we have

f(x+ 3y) + f(x− y) + 6f(x+ y) = 4f(x+ 2y) + 4f(x)(2.1)
f(x+ y) + f(x− 3y) + 6f(x− y) = 4f(x) + 4f(x− 2y) .(2.2)

Adding (2.1) to (2.2) and using the previous equation, we have

f(x+ 3y) + f(x− 3y) + 7f(x+ y) + 7f(x− y)
= 8f(x) + 4f(x+ 2y) + 4f(x− 2y)
= 16f(x+ y) + 16f(x+ y)− 16f(x) .

By multiplying by 4 and using f(2x) = 8f(x) , we obtain

4f(x+ 3y) + 4f(x− 3y) + 32f(2x)
= 8f(x) + 4 · 32f(x+ y) + 4 · 32f(x− y) .

By using above method and induction, we infer that

4f(x+my)+4f(x−my)+m2f(2x) = 8f(x)+4m2f(x+y)+4m2f(x−y) ,

for all x, y ∈ X and each integer m ≥ 2 .
Conversely, suppose that f satisfies the equation (1.4) for each integer

m ≥ 2 . By letting m = 2 ,

4f(x+ 2y) + 4f(x− 2y) + 4f(2x) = 8f(x) + 16f(x+ y) + 16f(x− y) .

Also, it satisfies that f(2x) = 8f(x) , for all x ∈ X . Enough to check
the case where m ≥ 3 is an integer number. By letting x = x + y and
x = x− y respectively, we obtain

4f(x+ (m+ 1)y) + 4f(x− (m− 1)y) +m2f(2(x+ y))
= 8f(x+ y) + 4m2f(x+ 2y) + 4m2f(x) ,

4f(x+ (m− 1)y) + 4f(x− (m+ 1)y) +m2f(2(x− y))
= 8f(x− y) + 4m2f(x) + 4m2f(x− 2y) .
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By adding two equations, we have

4f(x+ (m+ 1)y) + 4f(x− (m+ 1)y) + 4f(x+ (m− 1)y)
+4f(x− (m− 1)y) +m2f(2(x+ y)) +m2f(2(x− y))

= 8f(x+ y) + 8f(x− y) + 4m2f(x+ 2y) + 4m2f(x− 2y) + 8m2f(x) .

Now, by using the cases where m = 2 and m = m+ 1 ,

4(m+ 1)2f(x+ y) + 4(m+ 1)2f(x− y) + 8f(x)− (m+ 1)2f(2x)
+4f(x+ (m− 1)y) + 4f(x− (m− 1)y)
+m2f(2(x− y)) +m2f(2(x+ y))

= 8f(x− y) + 8f(x+ y) + 16m2f(x+ y) + 16m2f(x− y)
−24m2f(x) + 8m2f(x) .

Hence we have

4f(x+ (m− 1)y) + 4f(x− (m− 1)y) + (m− 1)2f(2x)
= 8f(x) + 4(m− 1)2f(x+ y) + 4(m− 1)2f(x− y) ,

for all x, y ∈ X . By using above method and induction, we can reduce
to the equation (1.3) for any integer m ≥ 2 . Thus f is cubic.

3. Stability

Throughout in this section, letX be a normed vector space with norm
‖ · ‖ and Y a Banach space with norm ‖ · ‖. For the given mapping
f : X → Y , we define

(3.1) Df(x, y) := 4f(x+my) + 4f(x−my) +m2f(2x)

−8f(x)− 4m2f(x+ y)− 4m2f(x− y) ,

for all x, y ∈ X and each integer m ≥ 2 .

Theorem 3.1. Let f : X → Y be a mapping for which there exists
a function φ : X ×X → [0,∞) such that

(3.2) φ̃(x, y) :=
∞∑
j=0

(
1
8
)jφ(2jx, 2jy) <∞ ,

(3.3) ‖ Df(x, y) ‖≤ φ(x, y) ,
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for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y
such that

(3.4) ‖ f(x)− C(x) ‖≤ 1
8m2

φ̃(x, 0) ,

for all x ∈ X , and each integer m ≥ 2 .

Proof. By letting y = 0 in the equation (3.3), we have

(3.5) ‖ f(x)− 1
8
f(2x) ‖≤ 1

8m2
φ(x, 0) ,

for all x ∈ X . Replacing x by 2x in the equation (3.5), we have

(3.6) ‖ f(2x)− 1
8
f(22x) ‖≤ 1

8m2
φ(2x, 0) ,

for all x ∈ X . Now, combining equations (3.5) and (3.6), we get

‖ f(x)− (
1
8
)2f(22x) ‖≤ 1

8m2

(
φ(x, 0) +

1
8
φ(2x, 0)

)
,

for all x ∈ X .
Continue this way, we may have

(3.7) ‖ f(x)− (
1
8
)nf(2nx) ‖≤ 1

8m2

n−1∑
j=0

(
1
8
)jφ(2jx, 0) ,

for all positive integer n and all x ∈ X .
For any positive integer s , dividing the equation (3.7) by 8s and then

substituting x by 2sx , we have

(
1
8
)s ‖ f(2sx)− (

1
8
)nf(2s+nx) ‖

≤ (
1
8
)s · 1

8m2

n−1∑
j=0

(
1
8
)jφ(2s+jx, 0) ,

for all x ∈ X .
By taking s → ∞ , we may conclude that {(1

8)nf(2nx)} is a
Cauchy sequence in a Banach space Y . This implies that the sequence
{(1

8)nf(2nx)} converges. Hence we can define a function C : X → Y by

C(x) = lim
n→∞

(
1
8
)nf(2nx) ,

for all x ∈ X . Then
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‖ DC(x, y) ‖ = lim
n→∞

(
1
8
)n ‖ Df(2nx, 2ny) ‖

≤ lim
n→∞

(
1
8
)nφ(2nx, 2ny)

= 0 ,

for all x, y ∈ X . That is, DC(x, y) = 0 . By Lemma 2.1, the function
C : X → Y is cubic. It only remains to show that the function C
is unique. Let C ′ : X → Y be another cubic function satisfying the
equation (3.4). Then

‖ C(x)− C ′(x) ‖ = (
1
8
)n ‖ C(2nx)− C ′(2nx) ‖

≤ (
1
8
)n(‖ C(2nx)− f(2nx) ‖ + ‖ f(2nx)− C ′(2nx) ‖)

≤ (
1
8
)n

1
8
φ̃(2nx, 0) ,

for all x ∈ X . As n → ∞ , we can conclude that C(x) = C ′(x) , for all
x ∈ X ; that is, C is unique.

Theorem 3.2. Let f : X → Y be a mapping for which there exists
a function φ : X ×X → [0,∞) such that

(3.8) φ̃(x, y) :=
∞∑
j=1

8jφ(2−jx, 2−jy) <∞ ,

(3.9) ‖ Df(x, y) ‖≤ φ(x, y) ,

for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y
such that

(3.10) ‖ f(x)− C(x) ‖≤ 1
m2

φ̃(x, 0) ,

for all x ∈ X , and each integer m ≥ 2 .

Proof. If x is replaced by 1
2x in the equation (3.5) in the proof of

Theorem 3.1, we have∣∣∣|f(x)− 8f(
1
2
x)

∣∣∣| ≤ 1
m2

φ(
1
2
x, 0) ,

for all x ∈ X . The remains of the proof are similar to the proof of
Theorem 3.1.
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4. Stability using alternative fixed point

In this section, we will investigate the stability of the given cubic
functional equation (3.1) using the alternative fixed point. Before pro-
ceeding the proof, we will state the theorem, the alternative of fixed
point.

Theorem 4.1 ( The alternative of fixed point [7], [12] ). Suppose that
we are given a complete generalized metric space (Ω, d) and a strictly
contractive mapping T : Ω → Ω with Lipschitz constant L . Then for
each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

1. d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;
2. The sequence (Tnx) is convergent to a fixed point y∗ of T ;
3. y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) <∞} ;

4. d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ 4 .

Now, let φ : X ×X → [0,∞) be a function such that

lim
r→∞

φ(λrix, λ
r
i y)

λ3r
i

= 0 ,

for all x, y ∈ X , where λi = 2 if i = 0 and λi = 1
2 if i = 1 .

Theorem 4.2. Suppose that a function f : X → Y satisfies the
functional inequality

(4.1) ‖ Df(x, y) ‖≤ φ(x, y) ,

for all x, y ∈ X . If there exists L = L(i) < 1 such that the function

(4.2) x 7→ ψ(x) = φ(
1
2
x, 0)

has the property

(4.3) ψ(x) ≤ L · λ3
i · ψ(

x

λi
) ,

for all x ∈ X , then there exists a unique cubic function C : X → Y such
that the inequality

(4.4) ‖ f(x)− C(x) ‖≤ L1−i

1− L
ψ(x)

holds for all x ∈ X .
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Proof. Consider the set

Ω = {g|g : X → Y }

and introduce the generalized metric on Ω ,

d(g, h) = dψ(g, h) = inf{K ∈ (0,∞)| ‖ g(x)−h(x) ‖≤ Kψ(x) , x ∈ X} .

It is easy to show that (Ω, d) is complete. Now we define a function
T : Ω → Ω by

Tg(x) =
1
λ3
i

g(λix) ,

for all x ∈ X . Note that for all g, h ∈ Ω ,

d(g, h) < K ⇒ ‖ g(x)− h(x) ‖≤ Kψ(x) , for all x ∈ X ,

⇒ ‖ 1
λ3
i

g(λix)−
1
λ3
i

h(λix) ‖≤
1
λ3
i

Kψ(λix) , for all x ∈ X ,

⇒ ‖ 1
λ3
i

g(λix)−
1
λ3
i

h(λix) ‖≤ LKψ(x) , for all x ∈ X ,

⇒ d(Tg, Th) ≤ LK .

Hence we have that

d(Tg, Th) ≤ Ld(g, h) ,

for all g, h ∈ Ω , that is, T is a strictly self-mapping of Ω with the
Lipschitz constant L . By setting y = 0 , we have the equation (3.5) as
in the proof of Theorem 3.1 and we use the equation (4.3) with the case
where i = 0 , which is reduced to

‖ f(x)− 1
8
f(2x) ‖≤ 1

m2

1
23
ψ(2x) ≤ Lψ(x) ,

for all x ∈ X , that is, d(f, Tf) ≤ L = L1 <∞ . Now, replacing x by 1
2x

in the equation (3.5), multiplying 8, and using the equation (4.3) with
the case where i = 1 , we have that

‖ f(x)− 23f(
x

2
) ‖≤ ψ(x) ,

for all x ∈ X , that is, d(f, Tf) ≤ 1 = L0 < ∞ . In both cases we can
apply the fixed point alternative and since limr→∞ d(T rf, C) = 0 , there
exists a fixed point C of T in Ω such that

(4.5) C(x) = lim
r→∞

f(λrix)
λ3r
i

,
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for all x ∈ X . Letting x = λrix and y = λri y in the equation (4.1) and
dividing by λ3r

i ,

‖ DC(x, y) ‖ = lim
r→∞

‖ Df(λrix, λ
r
i y) ‖

λ3r

≤ lim
r→∞

‖ φ(λrix, λ
r
i y) ‖

λ3r
= 0 ,

for all x, y ∈ X ; that is it satisfies the equation (1.3). By Lemma 2.1,
the C is cubic. Also, the fixed point alternative guarantees that such a
C is the unique function such that

‖ f(x)− C(x) ‖≤ K ψ(x) ,

for all x ∈ X and some K > 0 . Again using the fixed point alternative,
we have

d(f, C) ≤ 1
1− L

d(f, Tf) .

Hence we may conclude that

d(f, C) ≤ L1−i

1− L
,

which implies the equation (4.4).
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[13] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat.
Fis. Milano 53 (1983) 113–129.

[14] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, 1960.

*
Department of Mathematics Education, College of Education
Dankook University
Yongin, Gyeongi, 448-701, Republic of Korea
E-mail : khjmath@dankook.ac.kr


