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Abstract. In this paper, we prove the Hyers–Ulam–Rassias sta-
bility of the Cauchy functional equation f(x+y) = f(x)+f(y) and
of the Jensen functional equation 2f(x+y

2
) = f(x) + f(y) over the

p-adic field Qp. The concept of Hyers–Ulam–Rassias stability orig-
inated from the Th.M. Rassias’ stability theorem that appeared in
his paper: On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc. 72 (1978), 297–300.

1. Introduction and preliminaries

In [10], Hensel introduced the concept of p-adic numbers as a tool
for solving problems in algebra and number theory. His idea was to
extend the analogies between the ring of integers Z and the field of
rational numbers Q to the field of rational functions and Laurent series.
The way this was accomplished was by expressing any rational number
x ∈ Q as the sum

x =
∞∑

n≥n0

anpn,

where p is a prime number and n0, an ∈ Z (an ≤ p − 1). For a fixed
value of p, we denote by Qp the complete field of p-adic numbers (see
[9]).

Ulam [43] gave a talk before the Mathematics Club of the Univer-
sity of Wisconsin in which he discussed a number of unsolved problems.
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Among these was the following question concerning the stability of ho-
momorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·).
Given ε > 0, does there exist a δ > 0 such that if f : G → G′ satisfies
ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a homomorphism h : G →
G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and
some interesting variations of the problem have also been investigated.
We shall call such an f : G → G′ an approximate homomorphism.

Hyers [11] considered the case of approximately additive mappings
f : E → E′, where E and E′ are Banach spaces and f satisfies Hyers
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

No continuity conditions are required for this result, but if f(tx) is con-
tinuous in the real variable t for each fixed x ∈ E, then L is linear,
and if f is continuous at a single point of E then L : E → E′ is also
continuous.

Th.M. Rassias [34] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping
from a normed vector space E into a Banach space E′ subject to the
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping
which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p(1.2)
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for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2)
for x 6= 0.

Th.M. Rassias [35] during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be
proved for p ≥ 1. In 1991, Z. Gajda [7] following the same approach as
in Th.M. Rassias [34], gave an affirmative solution to this question for
p > 1. It was shown by Z. Gajda [7], as well as by Th.M. Rassias and P.
Šemrl [40] that one cannot prove a Th.M. Rassias’ type Theorem when
p = 1. The counterexamples of Z. Gajda [7], as well as of Th.M. Ras-
sias and P. Šemrl [40] have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear map-
pings, cf. P. Găvruta [8], S. Czerwik [4], S. Jung [19], who among others
studied the Hyers–Ulam–Rassias stability of functional equations. The
inequality (1.1) that was introduced for the first time by Th.M. Rassias
[34] provided a lot of influence in the development of a generalization
of the Hyers–Ulam stability concept. This new concept is known as
Hyers–Ulam–Rassias stability of functional equations (cf. the books of
P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Rassias [12], S. Jung
[20]).

Beginning around the year 1980 the topic of approximate homomor-
phisms and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (cf. D.H. Hyers
and Th.M. Rassias [14], Th.M. Rassias [38] and the references therein).

J.M. Rassias [30] following the spirit of the innovative approach of
Th.M. Rassias [34] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p ·
‖y‖q for p, q ∈ R with p + q 6= 1 (see also [31] for a number of other new
results).

P. Găvruta [8] provided a further generalization of Th.M. Rassias’
Theorem. In 1996, G. Isac and Th.M. Rassias [15] applied the Hyers–
Ulam–Rassias stability theory to prove fixed point theorems and study
some new applications in Nonlinear Analysis. In [13], D.H. Hyers, G.
Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers–
Ulam stability of mappings. In [18], Jun and Lee proved the Hyers–
Ulam–Rassias stability of the Jensen functional equation in Banach
spaces. In [28], the author introduced the Cauchy–Jensen functional
equation and proved the Hyers–Ulam–Rassias stability of the Cauchy–
Jensen functional equation in Banach spaces. Several papers have been
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published on various generalizations and applications of Hyers–Ulam sta-
bility and Hyers–Ulam–Rassias stability to a number of functional equa-
tions and mappings, for example: quadratic functional equation, invari-
ant means, multiplicative mappings - superstability, bounded nth differ-
ences, convex functions, generalized orthogonality functional equation,
Euler–Lagrange functional equation, Navier–Stokes equations. Several
mathematician have contributed works on these subjects; we mention a
few: M. Amyari and M.S. Moslehian [1], L.M. Arriola and W.A. Beyer
[2], D. Boo, S. Oh, C. Park and J. Park [3], K. Jun and H. Kim [16, 17],
C. Park [24, 25], C. Park, J. Park and J. Shin [29], F. Skof [42].

Everett and Ulam [6] presented results on generalizing Lorentz groups
over p-adic fields. p-adic fields have become of considerable interest to
physicists. A key property of p-adic fields is that they do not satisfy
the Archimedean axiom; for all a, b > 0, there exists an integer n such
that a < nb. This property has been found to be useful in theoret-
ical physics. In quantum mechanics [22, 23], it has been recognized
that fundamental limitations on measuring conjugate quantities such as
position-momentum or energy-time exist because of the Heisenberg un-
certainty principle. For example, any attempt at taking gravitational
measurements at sub-Planck domains, say, of the order of l = 10−35m,
would change the underlying geometry and introduce distortions to l.
Introducing a p-adic space-time could provide a means of quantifying
the non-localization affects.

We recall some definitions and results that will be needed later.

Definition 1.2. (Non-Archimedean Valuation) LetK denote a scalar
field, and | · | denote the usual absolute value, where | · | : K → R. A
non-Archimedean valuation is a function | · |p that satisfies the strong
triangle inequality; namely,

|x + y|p ≤ max{|x|p, |y|p} ≤ |x|p + |y|p
for all x, y ∈ K. The associated fieldK is referred to as a non-Archimedean
field.

Lemma 1.3. [9] For any nonzero rational number x, there exists a
unique integer n ∈ Z such that x = a

b pn, where a and b are integers not
divisible by p. The p-adic valuation is defined by |x|p := p−n.

Definition 1.4. (p-adic Field) For each prime p, define the p-adic
fieldQp to be the set of all p-adic expansionsQp := {x | x =

∑∞
k≥n0

akp
k},

where ak ≤ p− 1 are integers.
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Throughout this paper, assume that B is a Banach space with norm
‖ · ‖.

In this paper, we prove the Hyers–Ulam–Rassias stability of the
Cauchy functional equation and of the Jensen functional equation over
the p-adic fields Qp.

2. Stability of the Cauchy mapping over the p-adic field Qp

In this section, we prove the Hyers–Ulam–Rassias stability of the
Cauchy functional equation over the p-adic field Qp.

Theorem 2.1. Let r < 1 be a nonnegative real number and f : Qp →
B a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(|x|rp + |y|rp)(2.1)

for all x, y ∈ Qp. Then there exists a unique Cauchy additive mapping
L : Qp → B such that

‖f(x)− L(x)‖ ≤ 2θ

2− 2r
|x|rp(2.2)

for all x ∈ Qp.

Proof. Letting y = x in (2.1), we get

‖f(2x)− 2f(x)‖ ≤ 2θ|x|rp
for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ θ|x|rp

for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

2rjθ

2j
|x|rp(2.3)

for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (2.3) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping L : Qp → B by

L(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
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By (2.1),

‖L(x + y)− L(x)− L(y)‖ = lim
n→∞

1
2n
‖f(2nx + 2ny)− f(2nx)− f(2ny)‖

≤ lim
n→∞

2nr

2n
θ(|x|rp + |y|rp) = 0

for all x, y ∈ Qp. So

L(x + y) = L(x) + L(y)

for all x, y ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (2.3), we get (2.2).

Now, let T : Qp → B be another Cauchy additive mapping satisfying
(2.2). Then we have

‖L(x)− T (x)‖ =
1
2n
‖L(2nx)− T (2nx)‖

≤ 1
2n

(‖L(2nx)− f(2nx)‖+ ‖T (2nx)− f(2nx)‖)

≤ 4 · 2nrθ

(2− 2r)2n
|x|rp,

which tends to zero as n → ∞ for all x ∈ Qp. So we can conclude that
L(x) = T (x) for all x ∈ Qp. This proves the uniqueness of L.

Theorem 2.2. Let r < 1
2 be a nonnegative real number and f : Qp →

B a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ · |x|rp · |y|rp(2.4)

for all x, y ∈ Qp. Then there exists a unique Cauchy additive mapping
L : Qp → B such that

‖f(x)− L(x)‖ ≤ θ

2− 4r
|x|2r

p(2.5)

for all x ∈ Qp.

Proof. Letting y = x in (2.4), we get

‖f(2x)− 2f(x)‖ ≤ θ|x|2r
p

for all x ∈ Qp. So

‖f(x)− 1
2
f(2x)‖ ≤ θ

2
|x|2r

p

for all x ∈ Qp. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

4rjθ

2j+1
|x|2r

p(2.6)
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for all nonnegative integers m and l with m > l and all x ∈ Qp. It
follows from (2.6) that the sequence { 1

2n f(2nx)} is a Cauchy sequence
for all x ∈ Qp. Since B is complete, the sequence { 1

2n f(2nx)} converges.
So one can define the mapping L : Qp → B by

L(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ Qp.
By (2.4),

‖L(x + y)− L(x)− L(y)‖ = lim
n→∞

1
2n
‖f(2nx + 2ny)− f(2nx)− f(2ny)‖

≤ lim
n→∞

4nr

2n
θ · |x|rp · |y|rp = 0

for all x, y ∈ Qp. So

L(x + y) = L(x) + L(y)

for all x, y ∈ Qp. Moreover, letting l = 0 and passing the limit m →∞
in (2.6), we get (2.5).

Now, let T : Qp → B be another Cauchy additive mapping satisfying
(2.5). Then we have

‖L(x)− T (x)‖ =
1
2n
‖L(2nx)− T (2nx)‖

≤ 1
2n

(‖L(2nx)− f(2nx)‖+ ‖T (2nx)− f(2nx)‖)

≤ 2 · 4nrθ

(2− 4r)2n
|x|2r

p ,

which tends to zero as n → ∞ for all x ∈ Qp. So we can conclude that
L(x) = T (x) for all x ∈ Qp. This proves the uniqueness of L.

Theorem 2.3. Let r > 1 be a real number and f : B → Qp a
mapping such that

|f(x + y)− f(x)− f(y)|p ≤ θ(‖x‖r + ‖y‖r)(2.7)

for all x, y ∈ B. Then there exists a unique Cauchy additive mapping
L : B → Qp such that

|f(x)− L(x)|p ≤ 2θ

2r − 2
‖x‖r(2.8)

for all x ∈ B.
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Proof. Letting y = x in (2.7), we get

|f(2x)− 2f(x)|p ≤ 2θ‖x‖r

for all x ∈ B. So

|f(x)− 2f(
x

2
)|p ≤ 2θ

2r
‖x‖r

for all x ∈ B. Hence

|2lf(
x

2l
)− 2mf(

x

2m
)|p ≤

m−1∑

j=l

2j+1θ

2rj+r
‖x‖r(2.9)

for all nonnegative integers m and l with m > l and all x ∈ B. It
follows from (2.9) that the sequence {2nf( x

2n )} is a Cauchy sequence for
all x ∈ B. Since Qp is complete, the sequence {2nf( x

2n )} converges. So
one can define the mapping L : B → Qp by

L(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ B.
By (2.7),

|L(x + y)− L(x)− L(y)|p = lim
n→∞ |2

n(f(
x

2n
+

y

2n
)− f(

x

2n
)− f(

y

2n
))|p

≤ lim
n→∞

2n

2nr
θ(‖x‖r + ‖y‖r) = 0

for all x, y ∈ B. So
L(x + y) = L(x) + L(y)

for all x, y ∈ B. Moreover, letting l = 0 and passing the limit m → ∞
in (2.9), we get (2.8).

By the same method as in the proof of Theorem 2.1, one can prove
the uniqueness of L.

Theorem 2.4. Let r > 1
2 be a real number and f : B → Qp a

mapping such that

|f(x + y)− f(x)− f(y)|p ≤ θ · ‖x‖r · ‖y‖r(2.10)

for all x, y ∈ B. Then there exists a unique Cauchy additive mapping
L : B → Qp such that

|f(x)− L(x)|p ≤ θ

4r − 2
‖x‖2r(2.11)

for all x ∈ B.
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Proof. Letting y = x in (2.10), we get

|f(2x)− 2f(x)|p ≤ θ‖x‖2r

for all x ∈ B. So

|f(x)− 2f(
x

2
)|p ≤ θ

4r
‖x‖2r

for all x ∈ B. Hence

|2lf(
x

2l
)− 2mf(

x

2m
)|p ≤

m−1∑

j=l

2jθ

4rj+r
‖x‖2r(2.12)

for all nonnegative integers m and l with m > l and all x ∈ B. It follows
from (2.12) that the sequence {2nf( x

2n )} is a Cauchy sequence for all
x ∈ B. Since Qp is complete, the sequence {2nf( x

2n )} converges. So one
can define the mapping L : B → Qp by

L(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ B.
By (2.10),

|L(x + y)− L(x)− L(y)|p = lim
n→∞ |2

n(f(
x

2n
+

y

2n
)− f(

x

2n
)− f(

y

2n
))|p

≤ lim
n→∞

2n

4nr
θ · ‖x‖r · ‖y‖r = 0

for all x, y ∈ B. So
L(x + y) = L(x) + L(y)

for all x, y ∈ B. Moreover, letting l = 0 and passing the limit m → ∞
in (2.12), we get (2.11).

By the same method as in the proof of Theorem 2.2, one can prove
the uniqueness of L.

3. Stability of the Jensen mapping over the p-adic field Qp

In this section, we prove the Hyers–Ulam–Rassias stability of the
Jensen functional equation over the p-adic field Qp.

Theorem 3.1. Let r < 1 be a nonnegative real number and f : Qp →
B a mapping satisfying f(0) = 0 such that

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ θ(|x|rp + |y|rp)
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for all x, y ∈ Qp. Then there exists a unique Jensen additive mapping
L : Qp → B such that

‖f(x)− L(x)‖ ≤ 3 + 3r

3− 3r
θ|x|rp(3.1)

for all x ∈ Qp.

Proof. By the same reasoning as in the proofs of Theorem 1 in [18]
and Theorem 2.1, there is a unique Jensen additive mapping L : Qp → B
satisfying (3.1). The Jensen additive mapping L : Qp → B is given by

L(x) := lim
n→∞

1
3n

f(3nx)

for all x ∈ Qp.

Theorem 3.2. Let r < 1
2 be a nonnegative real number and f : Qp →

B a mapping satisfying f(0) = 0 such that

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ θ · |x|rp · |y|rp

for all x, y ∈ Qp. Then there exists a unique Jensen additive mapping
L : Qp → B such that

‖f(x)− L(x)‖ ≤ 1 + 3r

3− 32r
θ|x|2r

p(3.2)

for all x ∈ Qp.

Proof. By the same reasoning as in the proofs of Theorem 1 in [18]
and Theorem 2.2, there is a unique Jensen additive mapping L : Qp → B
satisfying (3.2). The Jensen additive mapping L : Qp → B is given by

L(x) := lim
n→∞

1
3n

f(3nx)

for all x ∈ Qp.

Theorem 3.3. Let r > 1 be a real number and f : B → Qp a
mapping satisfying f(0) = 0 such that

|2f(
x + y

2
)− f(x)− f(y)|p ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ B. Then there exists a unique Jensen additive mapping
L : B → Qp such that

|f(x)− L(x)|p ≤ 3r + 3
3r − 3

θ‖x‖r(3.3)

for all x ∈ B.
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Proof. By the same reasoning as in the proofs of Theorem 6 in [18]
and Theorem 2.3, there is a unique Jensen additive mapping L : B → Qp

satisfying (3.3). The Jensen additive mapping L : B → Qp is given by

L(x) := lim
n→∞ 3nf(

x

3n
)

for all x ∈ B.

Theorem 3.4. Let r > 1
2 be a real number and f : B → Qp a

mapping satisfying f(0) = 0 such that

|2f(
x + y

2
)− f(x)− f(y)|p ≤ θ · ‖x‖r · ‖y‖r

for all x, y ∈ B. Then there exists a unique Jensen additive mapping
L : B → Qp such that

|f(x)− L(x)|p ≤ 3r + 1
32r − 3

θ‖x‖2r(3.4)

for all x ∈ B.

Proof. By the same reasoning as in the proofs of Theorem 6 in [18]
and Theorem 2.4, there is a unique Jensen additive mapping L : B → Qp

satisfying (3.4). The Jensen additive mapping L : B → Qp is given by

L(x) := lim
n→∞ 3nf(

x

3n
)

for all x ∈ B.
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