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ABSTRACT. In this paper, we prove the Hyers—Ulam—Rassias sta-
bility of the Cauchy functional equation f(z+y) = f(z)+ f(y) and
of the Jensen functional equation 2f(%t%) = f(z) + f(y) over the
p-adic field Qp. The concept of Hyers-Ulam—Rassias stability orig-
inated from the Th.M. Rassias’ stability theorem that appeared in
his paper: On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc. 72 (1978), 297-300.

1. Introduction and preliminaries

In [10], Hensel introduced the concept of p-adic numbers as a tool
for solving problems in algebra and number theory. His idea was to
extend the analogies between the ring of integers Z and the field of
rational numbers Q to the field of rational functions and Laurent series.
The way this was accomplished was by expressing any rational number

x € Q as the sum
[o.¢]
T = Z anpna

n>ng

where p is a prime number and ng,a, € Z (a, < p—1). For a fixed
value of p, we denote by Q, the complete field of p-adic numbers (see
[9))-

Ulam [43] gave a talk before the Mathematics Club of the Univer-
sity of Wisconsin in which he discussed a number of unsolved problems.
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Among these was the following question concerning the stability of ho-
momorphisms.

We are given a group G and a metric group G' with metric p(-,-).
Given € > 0, does there exist a § > 0 such that if f : G — G’ satisfies
p(f(zy), f(z)f(y)) <& for all x,y € G, then a homomorphism h : G —
G’ exists with p(f(z),h(z)) <€ for allz € G?

By now an affirmative answer has been given in several cases, and
some interesting variations of the problem have also been investigated.
We shall call such an f : G — G’ an approzimate homomorphism.

Hyers [11] considered the case of approximately additive mappings
f:E — FE', where E and E’ are Banach spaces and f satisfies Hyers
inequality

[f(x+y) = flz) = fy)ll <e
for all z,y € E. It was shown that the limit

L(z) = lim f(2"x)

n—oo 2N

exists for all z € E and that L : E — E’ is the unique additive mapping
satisfying
1f(z) = L(z)|| <e.

No continuity conditions are required for this result, but if f(tx) is con-
tinuous in the real variable t for each fixed x € F, then L is linear,
and if f is continuous at a single point of F then L : E — FE’ is also
continuous.

Th.M. Rassias [34] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

THEOREM 1.1. (Th.M. Rassias). Let f : E — E’ be a mapping
from a normed vector space E into a Banach space E’ subject to the
inequality

(1.1) 1z +y) = f(z) = FWIl < e(ll=]” + [ly]*)

for all x,y € E, where € and p are constants with ¢ > 0 and p < 1. Then

the limit
2n
L(z) = lim f(2"x)

n—oo on

exists for all x € E and L : E — E’ is the unique additive mapping
which satisfies

(1.2) 1) - L()] < ——

2—-2p

[l
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for all x € E. If p < 0 then inequality (1.1) holds for z,y # 0 and (1.2)
for x # 0.

Th.M. Rassias [35] during the 27" International Symposium on Func-
tional Equations asked the question whether such a theorem can also be
proved for p > 1. In 1991, Z. Gajda [7] following the same approach as
in Th.M. Rassias [34], gave an affirmative solution to this question for
p > 1. It was shown by Z. Gajda [7], as well as by Th.M. Rassias and P.
Semrl [40] that one cannot prove a Th.M. Rassias’ type Theorem when
p = 1. The counterexamples of Z. Gajda [7], as well as of Th.M. Ras-
sias and P. Semrl [40] have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear map-
pings, cf. P. Gavruta [8], S. Czerwik [4], S. Jung [19], who among others
studied the Hyers—Ulam—Rassias stability of functional equations. The
inequality (1.1) that was introduced for the first time by Th.M. Rassias
[34] provided a lot of influence in the development of a generalization
of the Hyers—Ulam stability concept. This new concept is known as
Hyers—Ulam—Rassias stability of functional equations (cf. the books of
P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Rassias [12], S. Jung
120]).

Beginning around the year 1980 the topic of approximate homomor-
phisms and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (cf. D.H. Hyers
and Th.M. Rassias [14], Th.M. Rassias [38] and the references therein).

J.M. Rassias [30] following the spirit of the innovative approach of
Th.M. Rassias [34] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor ||z||” + ||y||P by ||z||? -
ly||? for p,q € R with p+ ¢ # 1 (see also [31] for a number of other new
results).

P. Gavruta [8] provided a further generalization of Th.M. Rassias’
Theorem. In 1996, G. Isac and Th.M. Rassias [15] applied the Hyers—
Ulam—Rassias stability theory to prove fixed point theorems and study
some new applications in Nonlinear Analysis. In [13], D.H. Hyers, G.
Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers—
Ulam stability of mappings. In [18], Jun and Lee proved the Hyers—
Ulam—Rassias stability of the Jensen functional equation in Banach
spaces. In [28], the author introduced the Cauchy—Jensen functional
equation and proved the Hyers—Ulam—-Rassias stability of the Cauchy—
Jensen functional equation in Banach spaces. Several papers have been
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published on various generalizations and applications of Hyers—Ulam sta-
bility and Hyers—Ulam—Rassias stability to a number of functional equa-
tions and mappings, for example: quadratic functional equation, invari-
ant means, multiplicative mappings - superstability, bounded nth differ-
ences, convex functions, generalized orthogonality functional equation,
Euler—Lagrange functional equation, Navier—Stokes equations. Several
mathematician have contributed works on these subjects; we mention a
few: M. Amyari and M.S. Moslehian [1], L.M. Arriola and W.A. Beyer
[2], D. Boo, S. Oh, C. Park and J. Park [3], K. Jun and H. Kim [16, 17],
C. Park [24, 25], C. Park, J. Park and J. Shin [29], F. Skof [42].

Everett and Ulam [6] presented results on generalizing Lorentz groups
over p-adic fields. p-adic fields have become of considerable interest to
physicists. A key property of p-adic fields is that they do not satisfy
the Archimedean axiom; for all a,b > 0, there exists an integer n such
that a < nb. This property has been found to be useful in theoret-
ical physics. In quantum mechanics [22, 23], it has been recognized
that fundamental limitations on measuring conjugate quantities such as
position-momentum or energy-time exist because of the Heisenberg un-
certainty principle. For example, any attempt at taking gravitational
measurements at sub-Planck domains, say, of the order of I = 1073%m,
would change the underlying geometry and introduce distortions to I.
Introducing a p-adic space-time could provide a means of quantifying
the non-localization affects.

We recall some definitions and results that will be needed later.

DEFINITION 1.2. (Non-Archimedean Valuation) Let K denote a scalar
field, and | - | denote the usual absolute value, where |- | : K — R. A
non-Archimedean valuation is a function | - |, that satisfies the strong
triangle inequality; namely,

|z + y‘p < maX{’x|p7 |y‘p} < |x|p + |y‘p

for all z,y € K. The associated field K is referred to as a non-Archimedean
field.

LEMMA 1.3. [9] For any nonzero rational number z, there exists a
unique integer n € Z such that x = 3p", where a and b are integers not
divisible by p. The p-adic valuation is defined by |x|, := p™".

DEFINITION 1.4. (p-adic Field) For each prime p, define the p-adic
field Q) to be the set of all p-adic expansions Q, := {z | z = Z;‘;no app®},
where ai < p — 1 are integers.
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Throughout this paper, assume that B is a Banach space with norm
-1l

In this paper, we prove the Hyers—Ulam—Rassias stability of the
Cauchy functional equation and of the Jensen functional equation over
the p-adic fields Q.

2. Stability of the Cauchy mapping over the p-adic field Q,

In this section, we prove the Hyers—Ulam—-Rassias stability of the
Cauchy functional equation over the p-adic field Q.

THEOREM 2.1. Let r < 1 be a nonnegative real number and f : Q, —
B a mapping such that

(2.1) 1f(e+y) = fl@) = FWI < (], + lylp)

for all z,y € Q,. Then there exists a unique Cauchy additive mapping
L :Q, — B such that

20
227

(2.2) 1f () = L(z)[| <

for all x € Q.

|z

Proof. Letting y = x in (2.1), we get
1 (2z) — 2f (2)|| < 26|z,
for all z € Qp. So
1 T
17 () = 5 £ (22)l| < O]zl
for all z € Q,. Hence

m—1

(23) Iy f@2) — gl < 3

g=l

213
9]

|z

for all nonnegative integers m and [ with m > [ and all z € Q,. It
follows from (2.3) that the sequence {5 f(2"z)} is a Cauchy sequence
for all x € Q. Since B is complete, the sequence {2% f(2"z)} converges.
So one can define the mapping L : Q, — B by
1
L(z):= lim — f(2"x)

n—oo 2N

for all x € Q.
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By (2.1),
IL(x +y) = L(z) = L{y)| = lim %Ilf@”x +2%y) — f(2"z) — f(2"y)|
< i 6(fzf, + [y[p) =0

for all z,y € Qp. So
Lz +y) = L(z) + L(y)

for all z,y € Q,. Moreover, letting [ = 0 and passing the limit m — oo
in (2.3), we get (2.2).

Now, let 7" : Q, — B be another Cauchy additive mapping satisfying
(2.2). Then we have

[1L(z) = T(2)]| = 2%IIL(TJL’)—T(2”ﬂ?)||

< %(!!L(Q”x) — @) | + T (2") — f(2"2)]])
4.2"0 ,

m’x\py

which tends to zero as n — oo for all z € Q,. So we can conclude that

L(z) = T(x) for all x € Q. This proves the uniqueness of L. O

<

THEOREM 2.2. Letr < % be a nonnegative real number and f : Q, —
B a mapping such that

(2.4) If(z+y) = flx) = fWI < 0-lzl,- vl
for all z,y € Q. Then there exists a unique Cauchy additive mapping
L :Q, — B such that

25 @)~ L@ < g2

el
for all x € Q.
Proof. Letting y = x in (2.4), we get
£ (22) = 2f (2)|| < O]
for all x € Q,. So
1 0, o
I7@)— 7@l < laf?
for all x € Q,. Hence
T 4mig

1 1
(2.6) I /@) = S fema)l < Y Sl
j=l
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for all nonnegative integers m and [ with m > [ and all x € Q,. It
follows from (2.6) that the sequence {5 f(2"z)} is a Cauchy sequence

for all 2 € Q. Since B is complete, the sequence {5 f(2"2)} converges.
So one can define the mapping L : Q, — B by

L(z) := lim %f(Q”x)

n—oo

for all z € Q.
By (2.4),

LG +9) ~ L)~ L) = Jm (2" +2") — F(2") — F(2")]

nr

IN

lim
n—oo 21

0[], lyl, =0
for all z,y € Q,. So
L(z +y) = L(z) + L(y)

for all z,y € Q,. Moreover, letting | = 0 and passing the limit m — oo
in (2.6), we get (2.5).

Now, let T : Q, — B be another Cauchy additive mapping satisfying
(2.5). Then we have

[1L(z) = T(x)|| = %IIL(W)—T(Q%)II
< %(I!L@”l‘) — f@")[[ +[IT(2"x) — f(2"2)])
c 240
- (2 _47’)2n p

which tends to zero as n — oo for all z € Q,. So we can conclude that
L(xz) =T(x) for all x € Qp. This proves the uniqueness of L. O

THEOREM 2.3. Let r > 1 be a real number and f : B — Q, a
mapping such that

(2.7) [fx+y) = fle) = fWl, < O=l" +[lyl")

for all x,y € B. Then there exists a unique Cauchy additive mapping
L : B — Q, such that

20
2r —2

(2.8) [f(z) = L(z)], <

for all x € B.

)"
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Proof. Letting y = x in (2.7), we get
|f(2x) = 2f (2)]p < 20|z
for all x € B. So

x 20, .
7@ =2fGlp < 5l
for all x € B. Hence
m—1 5,
x s T 20+
(2.9) 21(5) = 2" Gl < 3 e
]:

for all nonnegative integers m and [ with m > [ and all x € B. It
follows from (2.9) that the sequence {2" f(5%)} is a Cauchy sequence for
all x € B. Since Q, is complete, the sequence {2" f(5%)} converges. So
one can define the mapping L : B — Q,, by

L(x) = lim 2”f(2£n)

for all x € B.
By (2.7),
L@ +y) ~ L@) - L)ly = Tim [2"(F(5 + 50) = F(5) = £
2n
< lim 02"+ Jly|7) =0

for all z,y € B. So
L(z +y) = L(z) + L(y)
for all z,y € B. Moreover, letting [ = 0 and passing the limit m — oo
in (2.9), we get (2.8).
By the same method as in the proof of Theorem 2.1, one can prove
the uniqueness of L. O

THEOREM 2.4. Let r > % be a real number and f : B — Q, a

mapping such that

(2.10) [f@+y) = fl@) = fWl < -zl llyll"

for all x,y € B. Then there exists a unique Cauchy additive mapping
L : B — Q, such that

(2.11) [f(z) = L(z)], < ]|

for all x € B.

4m — 2
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Proof. Letting y = z in (2.10), we get

|f(2x) = 2f ()], < Ol|)*
for all z € B. So

x 6 ”
7@ —27()lp < P
for all z € B. Hence
m—1 -
x mes T 270 -
(212)  2AG) - 2 ml < 3 gl

j=l
for all nonnegative integers m and [ with m > [ and all z € B. It follows
from (2.12) that the sequence {2"f(57)} is a Cauchy sequence for all
x € B. Since Q) is complete, the sequence {2" f(5%)} converges. So one
can define the mapping L : B — Q,, by

L(z) := lim 2"f(2in)

for all z € B.
By (2.10),
. n T Y T Y
1Lz +y) = L(z) = L(y)l, = T [2°(f(5; + 50) = F(50) = F50))
< lim — 0 lzf|" - ly[" =0

n—oo 4N
for all z,y € B. So
L(z +y) = L(z) + L(y)
for all z,y € B. Moreover, letting [ = 0 and passing the limit m — oo
in (2.12), we get (2.11).
By the same method as in the proof of Theorem 2.2, one can prove
the uniqueness of L. O

3. Stability of the Jensen mapping over the p-adic field Q,

In this section, we prove the Hyers—Ulam-Rassias stability of the
Jensen functional equation over the p-adic field Q,.

THEOREM 3.1. Let r < 1 be a nonnegative real number and f : Q, —
B a mapping satisfying f(0) = 0 such that

12FCEEYY — f@) = f@)l < Ol + [ylD)

2
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for all x,y € Q,. Then there exists a unique Jensen additive mapping
L :Q, — B such that

343
(3.1) 1£(2) = L(2)ll = g —;

0|
for all x € Q).

Proof. By the same reasoning as in the proofs of Theorem 1 in [18]
and Theorem 2.1, there is a unique Jensen additive mapping L : Q, — B
satisfying (3.1). The Jensen additive mapping L : Q, — B is given by

L(w) = lim o f(3")

for all x € Q. O

THEOREM 3.2. Letr < % be a nonnegative real number and f : Q, —
B a mapping satisfying f(0) = 0 such that

||2f(“y> f@) = fw)ll < 0-lalp -1yl

for all x,y € Qp. Then there exists a unique Jensen additive mapping
L :Q, — B such that

(3-2) 1f () = L(z)|| <

for all x € Q).

143"

Proof. By the same reasoning as in the proofs of Theorem 1 in [18]
and Theorem 2.2, there is a unique Jensen additive mapping L : Q, — B
satisfying (3.2). The Jensen additive mapping L : Q, — B is given by

L(w) = lim o f(3"2)

n—oo

for all z € Q. O

THEOREM 3.3. Let » > 1 be a real number and f : B — Q, a
mapping satisfying f(0) = 0 such that

|2f<“y> F@) = FWl < 02"+ [lyll")

for all x,y € B. Then there exists a unique Jensen additive mapping
L : B — Q, such that

(33) 7() ~ L@ly < 5o ollell”

for all x € B.
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Proof. By the same reasoning as in the proofs of Theorem 6 in [18]
and Theorem 2.3, there is a unique Jensen additive mapping L : B — Q,
satisfying (3.3). The Jensen additive mapping L : B — Q, is given by

L(z) == lim 3"f(—)

n—00 3n

for all z € B. O

THEOREM 3.4. Let r > % be a real number and f : B — Q, a
mapping satisfying f(0) = 0 such that
x—i_y T T
2f(—7) = f@) =Wl < 0-[l=[" - llyll

for all z,y € B. Then there exists a unique Jensen additive mapping
L: B — Q, such that

3"+1
(3.4) @)~ L)l <

-6l
for all x € B.

Proof. By the same reasoning as in the proofs of Theorem 6 in [18]
and Theorem 2.4, there is a unique Jensen additive mapping L : B — Q,
satisfying (3.4). The Jensen additive mapping L : B — Q, is given by

L(z) := lim 3”f(3£n)

n—oo

for all z € B. O
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