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CHARACTERISTIC MULTIFRACTAL IN A
SELF-SIMILAR CANTOR SET

In Soo Baek*

Abstract. We study essentially disjoint one dimensionally indexed
classes whose members are distribution sets of a self-similar Cantor
set. The Hausdorff dimension of the union of distribution sets in a
same class does not increases the Hausdorff dimension of the charac-
teristic distribution set in the class. Further we study the Hausdorff
dimension of some uncountable union of distribution sets.

1. Introduction

Recently distribution sets of a self-similar set were investigated in
[2, 5]. We can apply these results to a self-similar Cantor set. There are
uncountably many disjoint distribution sets F [r1, r2] where 0 ≤ r1 ≤
r2 ≤ 1, which means that there are two dimensionally indexed dis-
tribution sets. Every distribution set F [r1, r2] has its own Hausdorff
dimension according to its lower distribution r1 and upper distribution
r2 of the digits in a self-similar Cantor set. It is well-known that the
Hausdorff dimension of a countable union of subsets is the supremum of
their Hausdorff dimensions. We do not have any general formula to get
the Hausdorff dimension of an uncountable union of subsets. In some
cases in a self-similar Cantor set, we can compute easily the Hausdorff
dimension of an uncountable union of subsets.

In this paper, we classify the two-dimensionally many distribution
sets into one-dimensionally many classes which have their own char-
acteristic distribution sets in their classes. For this purpose, we use
our recent results([1]) about a complete decomposition of a self-similar
Cantor set using the relation between the distribution sets and local
dimension sets of a self-similar measure on the self-similar Cantor set.
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The distribution set in [1] is of the form ∪0≤r1≤r2F [r1, r2] ≡ F (r2) or
∪r1≤r2≤1F [r1, r2] ≡ F (r1) where 0 ≤ r1 ≤ r2 ≤ 1. F (r2) are one dimen-
sionally indexed classes of distribution sets. So are F (r1). We will con-
sider another one dimensionally many classes H(r1, r2) = F (r1)∪F (r2)
where (r1, r2) are from a dimension formula δ(r1) = δ(r2) ∈ [0, s] where
as + bs = 1 in a self-similar Cantor set whose contraction ratios are a
and b. These classes H(r1, r2) are essentially disjoint in the sense that
the intersection of any two classes H(r1, r2) has distribution sets of zero
dimensional indices or only two distribution sets in two-dimensionally
many distribution sets. Every class H(r1, r2) has its characteristic dis-
tribution set as F [r1, r2] = F (r1) ∩ F (r2) whose Hausdorff dimension is
the Hausdorff dimension of the union of the members of H(r1, r2). Fur-
ther we compute the Hausdorff dimension of some uncountable union
of distribution sets related to a coordinate (r1, r2) where F [r1, r2] is a
characteristic distribution set.

2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the
similarities f1(x) = ax and f2(x) = bx + (1 − b) on I = [0, 1] with
a > 0, b > 0 and 1 − (a + b) > 0. Let Ii1,··· ,ik = fi1 ◦ · · · ◦ fik(I)
where ij ∈ {1, 2} and 1 ≤ j ≤ k. We note that if x ∈ F , then there is
σ ∈ {1, 2}N such that

⋂∞
k=1 Iσ|k = {x} (Here σ|k = i1, i2, · · · , ik where

σ = i1, i2, · · · , ik, ik+1, · · · ). Let p ∈ (0, 1) and we denote γp a self-
similar Borel probability measure on F satisfying γp(I1) = p(cf. [4]).
dim(E) denotes the Hausdorff dimension of E([4]). We denote n1(x|k)
the number of times the digit 1 occurs in the first k places of x = σ(cf.
[1]).
For r ∈ [0, 1], we define the lower(upper) distribution set F (r)(F (r))
containing the digit 1 in proportion r by

F (r) = {x ∈ F : lim inf
k→∞

n1(x|k)
k

= r},

F (r) = {x ∈ F : lim sup
k→∞

n1(x|k)
k

= r}.

We call {F (r) : 0 ≤ r ≤ 1} the lower distribution class and {F (r) : 0 ≤
r ≤ 1} the upper distribution class.
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Similarly for r1, r2 ∈ [0, 1] with r1 ≤ r2, we define a distribution set
F [r1, r2] by

F [r1, r2] = F (r1) ∩ F (r2).

We write E
(p)
α (E(p)

α ) for the set of points at which the lower(upper)
local dimension of γp on F is exactly α, so that

E(p)
α = {x : lim inf

r→0

log γp(Br(x))
log r

= α},

E
(p)
α = {x : lim sup

r→0

log γp(Br(x))
log r

= α}.

Similarly for α1, α2 ∈ [0, 1] with α1 ≤ α2, we define a subset E
(p)
[α1,α2]

E
(p)
[α1,α2] = E(p)

α1
∩ E

(p)
α2

.

In this paper, we assume that 0 log 0 = 0 for convenience. We define
for r ∈ [0, 1]

g(r, p) =
r log p + (1− r) log(1− p)

r log a + (1− r) log b
.

From now on we will use g(r, p) as the above definition.

3. Main results

Proposition 3.1. ([1]) Let s be a real number satisfying as +bs = 1.
Then
(1) F (r) = E

(p)
g(r,p) if 0 < p < as ,

(2) F (r) = E
(p)
g(r,p) if as < p < 1,

(3) F (r) = E
(p)
g(r,p) if 0 < p < as ,

(4) F (r) = E
(p)
g(r,p) if as < p < 1.

Further if we put δ(r) = g(r, r), then

(5) F (r) = E
(r)
δ(r) if 0 < r < as ,

(6) F (r) = E
(r)
δ(r) if as < r < 1.

From now on, s is a real number satisfying as + bs = 1 and δ(r) =
g(r, r) where 0 ≤ r ≤ 1.

Proposition 3.2. ([1]) We have
(1) dim(F (r)) = δ(r) if 0 ≤ r ≤ 1 ,
(2) dim(F (r)) = δ(r) if 0 ≤ r ≤ 1 .
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Proposition 3.3. ([3, 5]) For 0 ≤ r1 ≤ r2 ≤ 1,

dim(F [r1, r2]) = inf
r1≤r≤r2

δ(r).

Theorem 3.4. The function δ is a unimodal function on [0, 1] satis-
fying δ(0) = 0 = δ(1).

Proof. It is not difficult to show that δ′(r) > 0 for 0 ≤ r < as,
δ′(as) = 0 and δ′(r) < 0 for as < r ≤ 1. It follows that δ is a unimodal
function on [0, 1]. We easily see that δ(0) = 0 = δ(1).

Corollary 3.5. For 0 ≤ r1 ≤ r2 ≤ 1,

dim(F [r1, r2]) = min{δ(r1), δ(r2)}.

Proof. From the above Theorem, δ is a unimodal function on [0, 1].
It is immediate from the graph of δ and Proposition 3.3.

Remark 3.6. In Proposition 3.3, the upper bound of the Hausdorff
dimension of F [r1, r2] follows essentially from Proposition 3.1 and the
Frostman’s density theorem([4]). In view of the above Corollary, Propo-
sition 3.3 means that the upper bound is a sharp upper bound.

Corollary 3.7. For any d ∈ [0, s), there exist r1 and r2 such that
0 ≤ r1 < r2 ≤ 1 and δ(r1) = δ(r2) = d. Further δ(as) = s.

Proof. From the above Theorem, δ is a unimodal function on [0, 1].
It is immediate from the graph of δ.

Using the above Corollary, we define a characteristic coordinate set

∆ = {(r1, r2) ∈ [0, 1]× [0, 1] : δ(r1) = δ(r2) ∈ [0, s), r1 < r2} ∪ {(as, as)}
and also define characteristic classes

G(d) = F (r1) ∪ F (r2)

where (r1, r2) ∈ ∆ with δ(r1) = δ(r2) = d. We sometimes write H(r1, r2)
for G(d) where (r1, r2) ∈ ∆ with δ(r1) = δ(r2) = d. We call the distri-
bution set F [r1, r2] in H(r1, r2) a characteristic distribution set.

Theorem 3.8. For the characteristic classes G(d) where (r1, r2) ∈ ∆
with δ(r1) = δ(r2) = d ∈ [0, s],

dim(G(d)) = d = dim(F [r1, r2]).

Proof. Let (r1, r2) ∈ ∆ with δ(r1) = δ(r2) = d ∈ [0, s]. From Propo-
sition 3.3 and Corollary 3.7, dim(F (r1) ∩ F (r2)) = δ(r1) = δ(r2) since
(r1, r2) ∈ ∆. It follows from Proposition 3.2.
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Remark 3.9. The above Theorem shows that the characteristic dis-
tribution set F [r1, r2] in G(d)(= H(r1, r2)) represents the class H(r1, r2)
in dimensional sense. That is, distribution sets in in H(r1, r2) cannot
increase the Hausdorff dimension of the union of themselves and the
characteristic distribution set F [r1, r2] in H(r1, r2).

Remark 3.10. From Proposition 3.1, the characteristic distribution
set F [r1, r2] in H(r1, r2)(= G(d)) is E

(r1)
δ(r1) ∩ E

(r2)
δ(r2) = E

(r1)
d ∩ E

(r2)
d for

self-similar measures γr1 and γr2 on F where 0 ≤ r1 ≤ as ≤ r2 ≤ 1.
It can be represented by E

(p)
[g(r1,p),g(r2,p)] for a self-similar measure γp on

F where 0 < p < as from Proposition 3.1. Similarly it can be also
represented by E

(p)
[g(r2,p),g(r1,p)] for a self-similar measure γp on F where

as < p < 1 from Proposition 3.1.

Theorem 3.11.
∪d∈[0,s]G(d) = F.

Proof. It is immediate from the definition of G(d).

Theorem 3.12. Let A ⊂ {(r1, r2) : 0 ≤ r1 ≤ r2 ≤ 1}. Assume
that ∪(r1,r2)∈AF [r1, r2] ⊂ ∪d∈DA

G(d) and DA is a countable set. Then
dim(∪(r1,r2)∈AF [r1, r2]) ≤ supd∈DA

dim(G(d)).

Proof. Since Hausdorff dimension is countably stable([4]), it follows
from Theorem 3.8.

Example 3.13. Consider an uncountable set

A = {(r, n + 1
n + 2

) : n ∈ N, r ∈ Qc} ∪ {( 1
n + 2

, r) : n ∈ N, r ∈ Qc},

where Qc is the set of irrational numbers. Then dim(∪(r1,r2)∈AF [r1, r2]) =
max{δ(1

3), δ(2
3)} from the above Theorem if 1

3 < as < 2
3 .

The followings are the second part of our main results. We only
consider F [x, y] where 0 ≤ x ≤ y ≤ 1 since F [x, y] = φ if x > y.

Theorem 3.14. Let 0 ≤ r2 < as and A ⊂ [0, r2]. Then

dim(∪x∈AF [x, r2]) = sup
x∈A

δ(x) = δ(supA).

Proof. We note that δ(x) is an increasing function on [0, as]. Since
0 ≤ x ≤ r2 < as, δ(x) ≤ δ(r2). By Corollary 3.5, dim(F [x, r2]) = δ(x).
Hence dim(∪x∈AF [x, r2]) ≥ supx∈A δ(x).
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We note that F (r) = E
(p)
g(r,p) if 0 < p < as from Proposition 3.1. So

F [x, r2] ⊂ F (x) = E
(p)
g(x,p) if 0 < p < as. Since sup A < as from A ⊂

[0, r2] and 0 ≤ r2 < as, F [x, r2] ⊂ F (x) = E
(x2)
g(x,x2) where x2 = sup A. It

is not difficult to show that g(x, x2) is an increasing continuous function
for x since 0 < x2 < as(cf. [1]). We also note that g(x, x2) ≤ g(x2, x2) =
δ(x2) = supx∈A δ(x) since g(x, x2) is an increasing continuous function
for x. By the proposition 2.3 of [4] which is an essential result of Frost-
man’s density theorem, dim(∪x∈AF [x, r2]) ≤ supx∈A δ(x).

Theorem 3.15. Let as < r1 ≤ 1 and B ⊂ [r1, 1]. Then

dim(∪y∈BF [r1, y]) = sup
y∈B

δ(y) = δ(inf B).

Proof. It follows from the dual arguments of the proof of the above
Theorem.

Theorem 3.16. Let (r1, r2) ∈ ∆ which is the characteristic coordi-
nate set. Then we have
(1) dim(∪x∈AF [x, r2]) = supx∈A∩[0,r2] δ(x) = δ(sup(A ∩ [0, r2])) if A ∩
[r1, r2] = φ,
(2) dim(∪x∈AF [x, r2]) = δ(r2) if A ∩ [r1, r2] 6= φ,
(3) dim(∪y∈BF [r1, y]) = supy∈B∩[r1,1] δ(y) = δ(inf(B ∩ [r1, 1])) if B ∩
[r1, r2] = φ,
(4) dim(∪y∈BF [r1, y]) = δ(r1) if B ∩ [r1, r2] 6= φ.

Proof. (1) and (3) follow from the same arguments of the proofs of
the above two Theorems. Noting that δ is a unimodal function on [0, 1],
we easily see that (2) and (4) follow from Corollary 3.5 and Theorem
3.8.

Remark 3.17. We easily get dim(∪x∈AF [x, r2]) and dim(∪y∈BF [r1, y])
if A and B are countable sets since Hausdorff dimension is countable sta-
ble. But it is not easy to compute dim(∪x∈AF [x, r2]) or dim(∪y∈BF [r1, y])
if A and B are uncountable sets. In these cases, we apply our Theorems
above to the computation of their Hausdorff dimensions. If r1 ≤ as or
r2 ≥ as, then we apply the above Theorem to the computation of its
Hausdorff dimension. Precisely, if r1 ≤ as, then we easily find the coun-
terpart r2 such that (r1, r2) ∈ ∆. Similarly if r2 ≥ as, then we easily find
the counterpart r1 such that (r1, r2) ∈ ∆. If not, we apply Theorems
3.14 and 3.15 to the computation of their Hausdorff dimensions.
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