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THE NIELSEN NUMBER ON ASPHERICAL WEDGE

Seung Won Kim*

Abstract. Let X be a finite polyhedron that is of the homotopy
type of the wedge of the torus and the surface with boundary. Let
f : X → X be a self-map of X. In this paper, we prove that if
the induced endomorphism of π1(X) is K-reduced, then there is an
algorithm for computing the Nielsen number N(f).

1. Introduction

Let X be a finite aspherical polyhedron with the homotopy type of
the wedge of a torus and a surface with boundary and let f be a self-map
of X. The Nielsen number N(f), by its homotopy invariance, provides
a lower bound for the minimum number of fixed points over all maps
homotopic to f . The Nielsen number is easy to define geometrically, but
it is very difficult to compute. See [2] or [5] for the details.

For a given space X, the algebraic properties of fundamental group
π1(X) are quite important to compute the Nielsen numbers on it. If
π1(X) is a free or a free product group, then it is very difficult to compute
the Nielsen number on X. See [8].

In [7], Khamsemanan and Kim estimate the Nielsen number for maps
of aspherical spaces including X. The purpose of this paper is to prove
that the Nielsen number for many maps of X is explicitly computed
which is just estimated in [7]. Our main result is

Theorem 1.1. If an endomorphism of π1(X) is K-reduced, then there
is an algorithm for computing the Nielsen number.
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2. Preliminaries

For X a wedge of a torus and a surface with boundary, X is homo-
topy equivalent to a wedge of a torus and a bouquet of k circles and the
fundamental group π1(X) is isomorphic to a free product G ∗ Fk where
G = 〈a, b | aba−1b−1 = 1〉 and Fk = 〈c1, c2, · · · , ck〉. Since the Nielsen
number is a homotopy type invariant, we assume that X = T ∨ C is
a wedge of a torus T and a bouquet of k circles C. We denote the
intersection by x0. Let f : (X, x0) → (X,x0) be a self-map of X. To
simplify notation, we denote the fundamental group endomorphism in-
duced by a self-map by the same letter as the map. Since X is aspherical,
fundamental group information is sufficient to classify self-maps up to
homotopy.

Theorem 2.1 ([7, Theorem 4.1]). Every endomorphism f of π1(X)
satisfies at least one of the following:

(H1) f(a) = wg1w
−1 and f(b) = wg2w

−1 for some g1, g2 ∈ G and
w ∈ π1(X).

(H2) f(a) = us and fπ(b) = ut for some element u ∈ π1(X) and integers
s and t.

By the commutativity of the Nielsen number, calculating the Nielsen
number for a map satisfying (H2) is reduced to the calculation of the
Nielsen number for the corresponding map of a surface with boundary.
See [7] for details. There are some recent works for the calculation of
the Nielsen number on surface with boundary (see [4], [6], [9], and [10]).

Now suppose that f is a self-map of X and that the induced endomor-
phism of f satisfies the condition (H1). Then, there is a map f ′ : X → X
which is (freely) homotopic to f such that f ′(·) = w−1f(·)w, which sat-
isfies f ′(G) ⊆ G. For such a map f ′, since f ′(G) ⊆ G, we may deform
f ′ by a homotopy so that f ′|T , its restriction to T , has a minimal fixed
point set and f ′|C−{x0}, its restriction to C − {x0}, has fixed points
which correspond to the occurrences of ci

±1 in f ′(ci), 1 ≤ i ≤ k. The
map thus obtained we call the standard form of f and denote it also by
f . For the rest of the paper, we assume that all maps f : X → X will
be in standard form.

It is well-known that the number of fixed points of f |T is equal to
the Reidemeister number of f |T that is easily computed from the endo-
morphism f |G. For each fixed point xp of f , let αp be a representative
element of the corresponding Reidemeister class of xp. If xp is in T , then
we may assume that αp is in G. If xp is in C − {x0} which corresponds
to a word ci or ci

−1 in f(ci), then applying the Wagner’s method in [9],
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we can denote f(ci) by αpciα
−1
p . Note that we can also calculate αp

using the Fox derivative [3].
Let xp and xq be two fixed points of f : X → X. Then xp and

xq are in the same fixed point class of f if and only if there exists
z ∈ π1(X) = π1(X, x0) such that

z = α−1
p f(z)αq. (∗)

When equation (∗) holds, we will say that xp and xq are equivalent. In
order to compute the Nielsen number of f , it is necessary to classify
all equivalent fixed point classes. Each class is assigned a non-negative
integer as its index and a class is called essential if its index is non-zero.
The Nielsen number is the number of essential fixed point classes (see
[2] or [5] for the details).

For the next section, we introduce some notation for the free product
π1(X) = G ∗Fk = G ∗ 〈c1〉 ∗ · · · ∗ 〈ck〉. The groups G and 〈ci〉, 1 ≤ i ≤ k,
are called the free factors of π1(X). A reduced sequence is a sequence of
elements u1, u2, · · · , un from π1(X) such that ui 6= 1, ui is in a free factor,
and successive ui, ui+1 are not in the same free factor. Each element
u of π1(X) can be uniquely expressed as a product u = u1u2 · · ·un,
where u1, u2, · · · , un is a reduced sequence, which is called the reduced
form of u. If u = u1u2 · · ·un is reduced, then u1, u2, · · · , un are called
the syllables of u and the syllable length λ(u) is n. If u ∈ π1(X) is not
reduced , then the reduced form of u is unique. Let R(u) be the reduced
form of u. We define the syllable length λ(u) of an arbitrary element u
in π1(X) by λ(R(u)).

3. The main theorem

Let f : X → X be a map in standard form. The induced endomor-
phism f : π1(X) → π1(X) satisfies f(G) ⊆ G, and thus λ(f(g)) = 1 for
any g 6= 1 in G. For each i = 1, 2, · · · , k, let Xi = f(ci) and Yi = X±1

i .
We consider the initial segments of Xi that cancel in the products in the
set

{YjXi | Yj 6= X−1
i , 1 ≤ j ≤ k}.

Let Si be the longest such initial segment of Xi. Similarly, let Ti be the
longest terminal segment of Xi of those that cancel in the products in
the set

{XiYj | Yj 6= X−1
i , 1 ≤ j ≤ k}.

If |Xi| > |Si| + |Ti|, where |w| is the word length of a word w, then let
Ri = S−1

i XiT
−1
i . In this case, we have Xi = SiRiTi as reduced. (Si
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or Ti may be 1.) If λ(Ri) ≥ 2, then we say that Xi has strong syllable
remnant. This idea is inspired by Wagner’s algebraic condition remnant
for free group endomorphisms [9].

Definition 3.1. Let f : π1(X) → π1(X) be an endomorphism. We
call f K-reduced if the following conditions hold:
(K1) for all i = 1, 2, · · · , k and g ∈ G, λ(gYi) ≥ λ(Yi);
(K2) all Xi, 1 ≤ i ≤ k, have strong syllable remnant.

The following theorem is the main result in this paper.
Theorem 3.2. If an endomorphism f : π1(X) → π1(X) is K-

reduced, then there is an algorithm for computing the Nielsen number
N(f) of f : X → X.

The following technical lemmas will be used in the proof of the main
theorem.

Lemma 3.3. Suppose that f : π1(X) → π1(X) is K-reduced. Let xp

and xq be two fixed points of f in T . If xp and xq are in the same fixed
point class of f , then they are in the same fixed point class of f |T .

Proof. Suppose that two fixed points xp and xq in T are in the same
fixed point class of f . Then, as we mentioned in the previous section,
there is a solution z = z1z2 · · · zn in π1(X) = G ∗ Fk to the equation

z = α−1
p f(z)αq. (∗)

We assume that z = z1z2 · · · zn is in reduced form, and thus λ(z) = n.
We will prove that n = 1 and z = z1 is in G. Suppose first that z1

and zn are not in G. Since f is K-reduced and αp, αq are in G, we
have λ(α−1

p f(z)αq) ≥ n+2, and so this is a contradiction. Now suppose
that either z1 or zn is in G. We assume that z1 ∈ G and zn /∈ G.
The other case is similar. If f(z1) 6= αp, then since f is K-reduced,
λ(α−1

p f(z)αq) ≥ n + 1, which contradicts to λ(z) = n. If f(z1) = αp,
then the first letter of α−1

p f(z)αq is the first letter of f(z2). Since z2 is
not in G, neither is the first letter of f(z2) by (K1). But the first letter
of z is in G, and thus we have a contradiction. Therefore, z1 and zn

must be in G. If n 6= 1, then z2 and zn−1 are not in G. In this case,
we can prove that there is no solution z to the equation (∗) using the
similar argument as above. Hence, we have n = 1 and z = z1 is in G.
This implies that z is a solution to the equation

z = α−1
p f |G(z)αq.

This means that xp and xq are in the same fixed point class of f |T .
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Lemma 3.4. Suppose that f : π1(X) → π1(X) is K-reduced. Let xp

and xq be two fixed points of f such that they are not in the fixed point
class of x0. If xp is in T and xq is in C, then they are not in the same
fixed point class of f .

Proof. Suppose that two fixed points xp and xq are in the same fixed
point class of f . Then there is a solution z = z1z2 · · · zn to the equation

z = α−1
p f(z)αq (∗)

where z = z1z2 · · · zn is in reduced form, αp is in G, and Xi = αqciα
−1
q

for some i. If z ∈ G, then α−1
p f(z) ∈ G. Since αq 6= 1, by (K1), we

have α−1
p f(z)αq /∈ G. Thus we have z /∈ G. Then, since f is K-reduced,

all R’s in f(z) never cancel in the right hand side of (∗) except the last
one. If zn = c−`

i , ` ≥ 1, then the last R−1
i in f(zn) may cancel with αq

in the right hand side of (∗).
Case 1 Suppose that all R’s in f(z) do not cancel in the right hand side
of (∗).
If z1 ∈ G and f(z1) = αp, then as in the proof of Lemma 3.3, the first
letters of z and α−1

p f(z)αq are not the same. Otherwise, since z /∈ G
and no successive zi, zi+1 are in the same free factor, by (K1) and (K2),
we have λ(α−1

p f(z)αq) ≥ n + 1, which is a contradiction. Therefore, we
conclude that there is no solution to the equation (∗) in this case.
Case 2 Suppose that zn = c−`

i , ` ≥ 1 and there is a cancellation between
the last R−1

i in f(zn) and αq in the right hand side of (∗).
Let z′ = zci, then z = z′c−1

i and so

z′c−1
i = α−1

p f(z′c−1
i )αq

= α−1
p f(z′)X−1

i αq

= α−1
p f(z′)(αqc

−1
i α−1

q )αq

= α−1
p f(z′)αqc

−1
i .

Therefore, we have z′ = α−1
p f(z′)αq and since f is K-reduced, all R’s in

f(z′) do not cancel in α−1
p f(z′)αq. Since xq and x0 are not in the same

fixed point class, we have αq 6= 1 and so we can apply the argument used
in Case 1 for the equation z′ = α−1

p f(z′)αq so that there is no solution
z′ to the equation z′ = α−1

p f(z′)αq. Consequently, there is no solution
to the equation (∗).
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Lemma 3.5. Suppose that f : π1(X) → π1(X) is K-reduced. Let xp

and xq be two fixed points of f in C. Then xp and xq are in the same
fixed point class of f if and only if one of the following holds:

αp = αq, αp = αq, αp = αq or αp = αq.

Proof. Let Xi = αpciα
−1
p and Xj = αqcjα

−1
q . If αp = αq, αp =

αq, αp = αq or αp = αq hold, then 1, c−1
j , ci, or cic

−1
j are solutions to

the equation

z = α−1
p f(z)αq (∗)

respectively. Thus xp and xq are in the same fixed point class. Con-
versely, we assume that xp and xq are in the same fixed point class, and
thus there is a solution z = z1z2 · · · zn to the equation

z = α−1
p f(z)αq (∗)

where z = z1z2 · · · zn is in reduced form. If z = 1, then αp = αq. We
now assume that z 6= 1.
Case 1 Suppose that neither z1 = c`

i , ` ≥ 1, and α−1
p cancels with Ri in

α−1
p Xi nor zn = c−m

j , m ≥ 1, and αq cancels with R−1
j in X−1

j αq.
Without loss of generality, we may assume that αq 6= 1 and thus by
(K1), we have αq /∈ G. Note that we also have αp /∈ G except the case
that αp = 1. Now suppose that n = 1. If z = z1 ∈ G, then λ(z) = 1 and
f(z) ∈ G, but since αq /∈ G, by (K1), we have λ(α−1

p f(z)αq) ≥ 2, which
is a contradiction. If z ∈ Fk, then by (K2), we have λ(α−1

p f(z)αq) ≥ 2,
which is contrary to λ(z) = 1. Thus we conclude that n ≥ 2. Since no
successive zi, zi+1 are in the same free factor, by (K1) and (K2), we
have λ(α−1

p f(z)αq) ≥ n+1, but since λ(z) = n, we have a contradiction.
Consequently, there is no solution to the equation (∗) in this case.
Case 2 Suppose that either z1 = c`

i , ` ≥ 1, and α−1
p cancels with Ri in

α−1
p Xi or zn = c−m

j , m ≥ 1, and αq cancels with R−1
j in X−1

j αq.
We will show that αp = αq or αp = αq in this case. We will only show
that αp = αq under the condition that z1 = c`

i , ` ≥ 1, and α−1
p cancels

with Ri in α−1
p Xi. The other case is similar. Suppose that z1 = c`

i , ` ≥ 1,
and α−1

p cancels with Ri in α−1
p Xi and let z′ = c−1

i z. Then z = ciz
′ and
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so

ciz
′ = α−1

p f(ciz
′)αq

= α−1
p Xif(z′)αq

= α−1
p (αpciα

−1
p )f(z′)αq

= ciα
−1
p f(z′)αq.

Thus we have z′ = α−1
p f(z′)αq. If z′ = 1, then αp = αq. Otherwise, the

argument used in Case 1 does apply for the equation z′ = α−1
p f(z′)αq

and so the equation does not have any solution.
Case 3 z1 = c`

i and zn = c−m
i for some `,m ≥ 1, and α−1

p and αq cancel
with Ri and R−1

j in α−1
p f(z)αq respectively.

Using the similar argument as in Case 2 in this proof, we can prove
that z = cic

−1
j is the only solution to the equation (∗) in which we have

αp = αq.

We now present the proof of Theorem 3.2.

Proof. By Lemma 3.4, each fixed point class of f is contained in
either T − {x0} or C. By Lemma 3.3, the number of essential fixed
point classes that are contained in T − {x0} is equal to N(f |T ) − 1
where the Nielsen number N(f |T ) is easily computed from the induced
endomorphism f |G (see [1] or [5]). In order to classify all fixed point
classes in C, by Lemma 3.5, we only need to compare all α’s and α’s
including α0 = α0 = 1, which correspond to the fixed point x0. After
determining all essential fixed point class in C, we can compute the
Nielsen number N(f):

N(f) = N(f |T )− 1 + c

where c is the number of essential fixed point classes that are contained
in C.

Next example provides a more precise result concerning Example 4.2
in [7].

Example 3.6. Let X = T ∨ C with

π1(X, x0) = 〈a, b, c1, c2 | aba−1b−1 = 1〉.
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The endomorphism induced by f is given by

f(a) = c−1
1 a2bc2a

2b3c−1
2 b−1a−2c1,

f(b) = c−1
1 a2bc2a

−1bc−1
2 b−1a−2c1,

f(c1) = ac7
1a
−1c1b,

f(c2) = c1c
3
2.

The standard form f ′ of f is

f ′(a) = a2b3,

f ′(b) = a−1b,

f ′(c1) = c−1
2 b−1a−2c1ac7

1a
−1c1bc

−1
1 a2bc2,

f ′(c2) = c−1
2 b−1a−2c2

1c
3
2c
−1
1 a2bc2.

Khamsemanan and Kim [7] estimated that N(f) = N(f ′) ≥ 7. Let us
now compute the Nielsen number N(f ′) exactly. The Nielsen number
N(f ′|T ) is

N(f ′|T ) = | det(I − F )| = 3

where I =
[
1 0
0 1

]
is the identity matrix and F =

[
2 3
−1 1

]
represents

the endomorphism of H1(T ) induced by f . Now, we note that the fixed
points of f ′ in C are as follows:

fixed point αp αp index

x0 1 1 -1
x1 c−1

2 b−1a−2 w−1b−1c−1
1 ac−7

1 a−1 1
x2 w−1a w−1b−1c−1

1 ac−6
1 1

x3 w−1ac1 w−1b−1c−1
1 ac−5

1 1
x4 w−1ac2

1 w−1b−1c−1
1 ac−4

1 1
x5 w−1ac3

1 w−1b−1c−1
1 ac−3

1 1
x6 w−1ac4

1 w−1b−1c−1
1 ac−2

1 1
x7 w−1ac5

1 w−1b−1c−1
1 ac−1

1 1
x8 w−1ac6

1 w−1b−1c−1
1 a 1

x9 w−1ac7
1a
−1 w−1b−1 1

x10 w−1ac7
1a
−1c1bc

−1
1 w−1 -1

x11 c−1
2 w−1c−3

2 c−1
1 w -1

x12 w−1c1 w−1c−2
2 1

x13 w−1c1c2 w−1c−1
2 1

x14 w−1c1c
2
2 w−1 1

x15 w−1c1c
3
2c
−1
1 a2b 1 1

where w = c−1
1 a2bc2.

Since α0 = α15 and α10 = α14, this implies that x0 and x15 are in the
same fixed point class and so are x10 and x14. Since both classes are
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with index zero, we have c = 12. Consequently, we have

N(f) = N(f ′) = N(f ′|T )− 1 + c = 3− 1 + 12 = 14.
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