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COMPACTNESS OF MINIMIZING SEQUENCES FOR
THE SOBOLEV TRACE INEQUALITY

Young Ja Park*

Abstract. We construct a minimizing sequence for the Sobolev
trace inequality which satisfies compactness in the concentration
compactness property.

1. Sobolev trace inequalities and the main theorem

We are concerned with the Sobolev trace inequalities on Rn+1
+ : for

1 < p < n + 1
(∫

Rn

|f(x)|qdx

)p/q

≤Ap,q

(∫

Rn+1
+

|∇u(x, y)|pdxdy

)
,
1
q

=
n + 1− p

np
,(1)

where u is an extension of f to the upper half-space in the trace sense
and Ap,q is a positive constant independent of the function u. We may
replace W 1,p(Rn+1

+ ) by W 1,p(Rn+1) without loss of generality. It remains
open to find the best constant of (1) in general which is of geometric and
analytic importance [2, 3]. The question concerning the best constant
is equivalent to the following minimization problem:

I = inf
{
J(u) : u ∈ W 1,p(Rn+1),

∫

Rn

|u(x, 0)|qdx = 1
}

,(2)

J(u) :=
∫

Rn+1

|∇u(x, y)|pdxdy.(3)

In order to obtain a minimizer for the problem (2), we consider a mini-
mizing sequence (uk) for (2): that is, a sequence (uk) satisfying

I = lim
k→∞

J(uk)
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with

uk ∈ W 1,p(Rn+1) and
∫

Rn

|uk(x, 0)|qdx = 1 for each k.

In this paper, we investigate compactness of a minimizing sequence. In
fact, we construct a minimizing sequence having the property which is
stated in the following theorem. Hereafter, Br(x) represents the ball
centered at x with radius r in Rn, Rn+1, or RN , which will be clear in
the context.

Theorem 1.1. There exist a minimizing sequence (uk) in W 1,p(Rn+1)
and a sequence (wk, w̃k) ∈ Rn × R satisfying the following compactness
property: for any ε > 0, there exists R > 0 such that∫

[BR((wk,w̃k))]C
|∇uk(x, y)|pdxdy +

∫

[BR((wk,w̃k))]C
|uk(x, y)| (n+1)q

n dxdy

+
∫

[BR((wk,w̃k))]C∩Rn×{0}
|uk(x, 0)|qdx < ε.

The main tool for the proof is a concentration compactness lemma,
which is stated in the following:

Lemma 1.2 (Concentration Compactness). Let (ρk) be a sequence of
positive functions in L1(RN ) satisfying

∫

RN

ρkdx ≡ λk → λ (λ fixed).

Then there exists a subsequence (ρkj ) of (ρk) satisfying one of the fol-
lowing possibilities:
(i) (Compactness) there exists a sequence (yj) in RN so that for any
ε > 0 there exists a radius R > 0 such that∫

BR(yj)
ρkj

(x)dx ≥ λ− ε.

(ii) (Vanishing) for any positive real number R,

lim
j→∞

sup
y∈RN

∫

BR(y)
ρkj (x)dx = 0.

(iii) (Dichotomy) there exists α ∈ (0, λ) such that for any ε > 0, there
exist j0 ∈ N and sequence (yj) ∈ RN satsfying for ηj := ρkjχBR(yj) and
ξj := ρkjχ[RN−BRj

(yj)],

‖ρkj − (ηj + ξj)‖L1(RN ) < ε,
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∣∣∣∣
∫

RN

ηj(x)dx− α

∣∣∣∣ ≤ ε,

∣∣∣∣
∫

RN

ξj(x)dx− (λ− α)
∣∣∣∣ ≤ ε,

provided that j ≥ j0, and

dist(supp ηj , supp ξj) →∞ as j →∞,

where dist(A,B) ≡ inf{|a− b| : a ∈ A and b ∈ B}.

2. Proof of the main theorem

Consider a minimizing sequence (uk) of the minimization problem
(2). The idea is to show that vanishing and dichotomy occurring for this
sequence of functions can be prevented by judicial choice of dilations, so
that the concentration compactness lemma will leave us the only option
of the compactness. Theorem is proved in two parts. In part I, we
manage with appropriate dilations to make a minimizing sequence (uk)
into a new sequence for which the vanishing(in Lemma 1.2) is prevented.
Then in part II, we prove the dichotomy does not occur on the modified
minimizing sequence.

2.1. Part I: The vanishing can be prevented.

We consider a sequence of functions defined by:

Pk(x, y) ≡ |∇uk(x, y)|p + |uk(x, 0)|q ⊗ δ0(y) + |uk(x, y)|n+1
n

q,

where δ0 is the Dirac measure at 0. Then we can see that Pk ≥ 0 and∫

Rn+1

Pk(x, y)dxdy = Lk → L ≥ I + 1

by the Sobolev embedding theorem. Consider the concentration function
Qk of Pk defined as

Qk(t) := sup
(x,y)∈Rn×R

∫

Bt((x,y))
Pk(w, s)dwds for t > 0.

Then (Qk) is a sequence of non-decreasing continuous functions on R+.
For σ > 0, consider the concentration function Qσ

k of

P σ
k (x, y) ≡ |∇uσ

k(x, y)|p + |uσ
k(x, 0)|q ⊗ δ0(y) + |uσ

k(x, y)|n+1
n

q,

where uσ
k(x, y) is defined by

uσ
k(x, y) ≡ σ

−n
q uk

(x

σ
,
y

σ

)
for x ∈ Rn and y ∈ R.
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Then we can easily observe that Qσ
k(t) = Qk( t

σ ). So, there is a chance
of vanishing occurring. In order to avoid that, we take a sequence (σk)
of dilations so that Qσk

k (1) = 1
2 . We can see that

lim
k→∞

sup
(x,y)∈Rn×R

∫

BR((x,y))
P σk

k (w, s)dwds ≥ 1
2

for R ≥ 1,

since Qσk
k (t) ≥ 1

2 for t ≥ 1. The vanishing is prevented by the choice of
dilations. We will denote the new minimizing sequence

(
uσk

k

)
by (uk).

2.2. Part II: The dichotomy does not occur.

Suppose the dichotomy occurs. Then there exists λ∗ ∈ (0, L) ∪ (L,L′]
(L′ = sup

k
{Lk}) such that for any ε > 0 there exist (wk, w̃k) ∈ Rn × R

and Rk, k = 0, 1, 2, · · · with Rk > R0 (for k = 1, 2, · · · ) and Rk →∞ so
that

∣∣∣∣∣ λ∗ −
∫

BR0
((wk,w̃k))

Pk(x, y)dxdy

∣∣∣∣∣ < ε,

∣∣∣∣∣ (L− λ∗)−
∫

[BRk
((wk,w̃k))]C

Pk(x, y)dxdy

∣∣∣∣∣ < ε,

∫

R0<|(x,y)−(wk,w̃k)|<Rk

Pk(x, y)dxdy < ε,

supp [PkχBR0
((wk,w̃k))] ⊂ BR0((wk, w̃k)),

supp [Pk(1− χBRk
((wk,w̃k)))] ⊂ [BRk

((wk, w̃k))]C ,

dist
(
supp[PkχBR0

((wk,w̃k))], supp[Pk(1− χBRk
((wk,w̃k)))]

)

≥ dist
(
BR0((wk, w̃k)), [BRk

((wk, w̃k))]C
) →∞ as k →∞.

Consider two functions ξ, η ∈ C∞
b (Rn+1) satisfying 0 ≤ ξ, η ≤ 1,

ξ(x, y) =
{

1 if |(x, y)| ≤ 1,
0 if |(x, y)| ≥ 2, and η(x, y) =

{
0 if |(x, y)| ≤ 1

2 ,
1 if |(x, y)| ≥ 1.

We may take R1 so that 4R1 ≤ Rk for k = 2, 3, · · · . Define

ξk(x, y) ≡ ξ

(
x− wk

R1
,
y − w̃k

R1

)
and ηk(x, y) ≡ η

(
x− wk

Rk
,
y − w̃k

Rk

)
.
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We look at the following quantity: for k large enough,

M =
∫

Rn+1

|∇uk|pdxdy −
∫

Rn+1

|∇(ukξk)|pdxdy −
∫

Rn+1

|∇(ukηk)|pdxdy

=
∫

BRk
−BR1

|∇uk|pdxdy −
∫

B2R1
−BR1

|∇(ukξk)|pdxdy

−
∫

BRk
−B 1

2 Rk

|∇(ukηk)|pdxdy

≡ M1 −M2 −M3.

First, we have

M1 ≤
∫

R0<|(x,y)−(wk,w̃k)|<Rk

Pk(x, y)dxdy < ε.

Using Hölder’s inequality and the Sobolev embedding theorem together
with the assumptions in the beginning of the lemma, we have

M1/p
2 ≤

(∫

B2R1
−BR1

|∇uk|p|ξk|pdxdy

) 1
p

+

(∫

B2R1
−BR1

|uk|p|∇ξk|pdxdy

) 1
p

≤
(∫

BRk
−BR0

|∇uk|pdxdy

) 1
p

+

(∫

B2R1
−BR0

|∇ξk|p|uk|pdxdy

) 1
p

< ε1/p +
(∫

Rn+1

|∇ξk|n+1dxdy

) 1
n+1

(∫

BRk
−BR0

|uk|
n+1

n
qdxdy

) n
(n+1)q

< ε1/p + Cε
n

(n+1)q .

All the balls in the above inequality are centered at (wk, w̃k). Similarly,
we can show that M1/p

3 < ε+Cε
n

(n+1)q . Denote u1k ≡ ukξk, u2k ≡ ukηk.
By combining these estimates, we finally have

|M| =
∣∣∣∣
∫

Rn+1

|∇uk|pdxdy −
∫

Rn+1

|∇u1k|pdxdy −
∫

Rn+1

|∇u2k|pdxdy

∣∣∣∣
< ε + Cε

np
(n+1)q .

In other words,

I = lim
k→∞

∫

Rn+1

|∇uk|pdxdy

= lim
k→∞

∫

Rn+1

|∇u1k|pdxdy + lim
k→∞

∫

Rn+1

|∇u2k|pdxdy.
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It follows from the assumptions at the beginning that∣∣∣∣
∫

Rn

|u2k|qdx −
(∫

Rn

|uk|qdx−
∫

Rn

|u1k|qdx

)∣∣∣∣

≤
∫

BRk((wk,w̃k))−BR1((wk,w̃k))

|uk(x, 0)|q ⊗ δ0(y)dxdy

≤
∫

R0≤|(x,y)−(wk,w̃k)|≤Rk

|uk(x, y)|q ⊗ δ0(y)dxdy < ε.

Let αk ≡
∫
Rn |u1k(x, 0)|qdx, and βk ≡

∫
Rn |u2k(x, 0)|qdx. By taking a

subsequence, if necessary, we may assume that αk → α, and βk → β.
We can see that

0 ≤ α, β ≤ 1 and | β − (1− α) | < ε.

Use the estimates for M to observe that∣∣∣∣
∫

Rn+1

|∇u1k(x, y)|p+|u1k(x, y)| (n+1)q
n +|u1k(x, 0)|q ⊗ δ0(y)dxdy − λ∗

∣∣∣∣<ε,

∣∣∣∣
∫

Rn+1

|∇u2k(x, y)|p+|u2k(x, y)| (n+1)q
n +|u2k(x, 0)|q⊗δ0(y)dxdy−(L−λ∗)

∣∣∣∣
< ε.

We can also see that there is a positive constant γ such that∫

Rn+1

|∇uik(x, y)|pdxdy ≥ γ > 0

for i = 1, 2 by the Sobolev embedding theorem and the Sobolev trace
inequalities together with the estimates above. Now we look at all the
possible values for α and β. They are:

(a) : αk → 0 (βk → 1), (b) : α 6= 0 (β 6= 1),

(c) : αk → 1 (βk → 0), (d) : β 6= 0 (α 6= 1).

By exchanging the roles of αk and α with βk and β, the cases (c) and
(d) reduce to the cases (a) and (b). In the case (a), it follows from the
estimates for M that I ≥ γ + I − ε for all small ε, which leads to a
contradiction that I ≥ γ + I > I. For the case (b), we define Iα as

Iα≡ inf
{
J(u) :

∫

Rn

|u(x, 0)|qdx = α, u ∈ W 1,p(Rn+1)
}

,

where J is defined in (3). It easily follows from the definition that I = I1

and Iα = αp/qI. It can also be shown that

I < Iα + I1−α for 0 < α < 1.(4)
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Now, in the case (b), we have I ≥ Iα +I1−α−ε for all small ε > 0, which
violates (4).

Since we have shown that vanishing and dichotomy can not occur,
we complete the proof of the theorem by Lemma 1.2. 2
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