JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **21**, No. 3, September 2008

ALGEBRAIC STRUCTURES IN A PRINCIPAL FIBRE BUNDLE

JOON-SIK PARK*

ABSTRACT. Let $P(M, G, \pi) =: P$ be a principal fibre bundle with structure Lie group G over a base manifold M. In this paper we get the following facts:

1. The tangent bundle TG of the structure Lie group G in $P(M, G, \pi) =: P$ is a Lie group.

2. The Lie algebra $\mathfrak{g} = T_e G$ is a normal subgroup of the Lie group TG.

3. $TP(TM, TG, \pi_*) =: TP$ is a principal fibre bundle with structure Lie group TG and projection π_* over base manifold TM, where π_* is the differential map of the projection π of P onto M.

4. for a Lie group H, $TH = H \circ T_e H = T_e H \circ H = TH$ and $H \cap T_e H = \{e\}$, but H is not a normal subgroup of the group TH in general.

1. Introduction

In this note, a general survey on the principal fibre bundle $TP(TM, TG, \pi_*) =: TP$ induced from a principal fibre bundle $P(M, G, \pi) =: P$ which is appeared in [7, p. 55] is explained in details. As by-products, we obtain the following facts:

• the Lie algebra $\mathfrak{g} = T_e G$ is a normal subgroup of the Lie group TG.

• for a Lie group H, $H \circ T_e H = T_e H \circ H = TH$ and $H \cap T_e H = \{e\}$, but the subgroup H of the group TH is not a normal subgroup of THin general, and so the group TH and the product group $H \times T_e H (= T_e H \times H)$ of H and $T_e H$ are not group-isomorphic in general.

Received June 08, 2008; Accepted August 14, 2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C07; Secondary 53A15.

Key words and phrases: principal fibre bundles, free actions, splitting exact sequences.

^{*}This research was supported by Pusan University of Foreign Studies Research Grant in 2006.

Joon-Sik Park

2. The proof of main results

Let M be a C^{∞} -manifold and G a Lie group. A principal fibre bundle over M with group G consists of a manifold P and an action of G on Psatisfying the following conditions:

(1) G acts freely on P on the right:

 $P \times G \ni (u, a) \mapsto ua = R_a(u) \in P;$

(2) M is the quotient space of P by the equivalence relation by G, M = P/G, and the canonial projection $\pi : P \to M$ is differentiable;

(3) *P* is locally trivial, that is, every point *x* of *M* has a neighbourhood *U* such that $\pi^{-1}(U)$ is isomorphic with $U \times G$ in the sense that there is a diffeomorphism $\Psi : \pi^{-1}(U) \to U \times G$ such that $\Psi(u) = (\pi(u), \psi(u))$ where ψ is a mapping of $\pi^{-1}(U)$ into *G* satisfying $\psi(ua) = \psi(u) \cdot a$ for all $u \in \pi^{-1}(U)$ and $a \in G$.

A principal fibre bundle will be denoted by $P(M, G, \pi)$, P(M, G) or simply P. In general, we call P the total space or the bundle space, Mthe base space, G the structure group and π the projection.

Given a mapping f of a manifold M into another manifold M', the differential at a point $p(\in M)$ of f is the liner mapping f_* of T_pM into $T_{f(p)}M'$ which is defined as follows. For each $X \in T_pM$, choose an integral curve x(t) of the vector X in M such that X is the vector tangent to x(t) at $p = x(t_0)$. Then $f_*(X)$ is the vector tangent to the curve f(x(t)) at $f(p) = f(x(t_0))$. It follows immediately that if g is a function differentiable in a neighbourhood of f(p), then $(f_*(X))(g) =$ $X(g \circ f)$. We may also consider f_* as the map of $TM := \bigcup_{n \in M} T_pM$ into

$$TM' = \bigcup_{q \in M'} T_q M'.$$

A binary operation \circ on the tangent bundle TG of a Lie group G can be defined as follows:

For $X \in T_g G$ and $Y \in T_{g'} G$ $(g, g' \in G)$, choose curves x(t) and y(t)in G such that X and Y are the vectors tangent to x(t) and y(t) at $g = x(t_0)$ and $g' = y(t_0)$, respectively. Then $X \circ Y := Xg' + gY :=$ $dR_{g'}(X) + dL_g(Y) \in T_{gg'} G \subset TG$ is the vector tangent to the curve $x(t) \cdot y(t)$ at $g \cdot g' = x(t_0) \cdot y(t_0) \in G$.

Then TG is a group with respect to the operation \circ on TG which is just defined. In fact, the zero vector O_e belonging to T_eG is the identity element of TG with respect to the operation \circ , where e is the identity element of the Lie group G. For $X \in T_eG, Y \in T_hG$ and $Z \in T_kG$

372

 $(g, h, k \in G), (X \circ Y) \circ Z = X \circ (Y \circ Z).$ Moreover, with respect to the operation \circ on TG, the inverse element of $X (\in T_g G)$ which is tangent to a curve x(t) in G at $g = x(t_0)$ is the vector tangent to the curve $x(t)^{-1}$ at $g^{-1} = x(t_0)^{-1} \in G$.

We may regard the Lie group G and its Lie algebra \mathfrak{g} also as subgroups $\{O_g|O_g \text{ is the zero vector in } T_gG, g \in G\}$ and T_eG of the group TG with the operation \circ . Moreover, for an arbitrary given $g \in G$ and an arbitrary given X beloing to the space $T_gG, X \circ T_eG = T_eG \circ X$. So, $T_eG = \mathfrak{g}$ is a normal subgroup of the Lie group TG.

For $X \in T_gG$, $X \circ G = \{X \circ k = Xk | k \in G\}$ and $G \circ X = \{h \circ X = hX | h \in G\}$. So, in general $X \circ G \neq G \circ X$. Hence, G is not a normal subgroup of the group TG in general. Evidently, $G \cap T_eG = \{e\}$. And, by the definition of the operation \circ on TG, $G \circ T_eG = T_eG \circ G = TG$.

Thus we have

THEOREM 2.1. Let G be a Lie group. Then,

(1) the differential of the group operation of $G \times G$ into G is a group operation on TG.

(2) the Lie group G is a subgroup of the Lie group TG.

(3) its Lie algebra $\mathfrak{g} = T_e G$ are a normal subgroup of the group TG.

(4) $G \circ T_e G = T_e G \circ G = TG$ and $G \cap T_e G = \{e\}$, but in general G is not a normal subgroup of TG.

Let H and K be two normal subgroups of a group X. Then, X is said to be the *direct product* of the normal subgroups H and K iff HK(=KH) = X and $H \cap K = \{e\}$ ([5, p. 62]).

By virtue of the fact (4) of Theorem 2.1, we obtain

COROLLARY 2.2. For a Lie group G, $TG = G \circ T_e G = T_e G \circ G = TG$ and $G \cap T_e G = \{e\}$, but the group TG and the product group $G \times T_e G (= T_e G \times G)$ of G and $T_e G$ are not group-isomorphic in general.

A sequence of group homomorphisms

$$G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \to \cdots \xrightarrow{f_{n-1}} G_n$$

is said to be *exact* if it is exact at each joint, i.e., if $\text{Im} f_i = \text{Ker} f_{i+1}$ for each $i = 1, 2, \dots, n-2$. And, we say that an exact sequence

$$G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \to \cdots \xrightarrow{f_{n-1}} G_n$$

splits at the group G_i , $(i = 2, 3, \dots, n-1)$, iff the group G_i is the direct product of $\text{Im} f_{i-1} = \text{Ker} f_i$ and another normal subgroup of G_i . Moreover,

Joon-Sik Park

if an exact sequence splits at each of its non-end groups, we say that it *splits* (or, it is a *split* exact sequence) ([5, p. 71]).

There is the following problem in [7, Problem 4.1 in p. 55]:

Prove the fact that the following exact sequence splits;

$$0 \hookrightarrow \mathfrak{g} = T_e G \hookrightarrow TG \xrightarrow{\pi} G \to 0.$$

Referring to the fact (4) of Theorem 2.1, it may be difficult for us to prove the problem on *split* of the short exact sequence above. Probably, I do not think that the exact sequence above splits in general.

The differential of the action of the group G on $P(M, G, \pi)$ induces the right action of the group TG on TP, (i.e., $TP \times TG \to TP$). Similarly we may regard P as a subset of TP. Moreover, for $A \in \mathfrak{g} \subset TG$ and $u \in P \subset TP, uA (\in TP)$ makes sense. In fact, $uA = A_u^* \in T_uP$, where A^* is the fundamental vector field corresponding to A (cf. [4,7]). The projection $\pi : P \to M$ and the group operation $u : G \times G \to G$ induce differentials $\pi_* : TP \to TM$ and $\mu_* : TG \times TG = T(G \times G) \to TG$. Here, $\mu_*(=\circ)$ is the group operation on the Lie group TG.

Since P is local trivial, for each point $x \in M$ there exists a proper open neighbourhood U of the point x such that $\pi^{-1}(U)$ is diffeomorphic with $U \times G$. Then there exists a cross section σ_U of U into $\pi^{-1}(U) (\subset P)$. Then $\Psi \rfloor_{\pi^{-1}(U)} : \pi^{-1}(U) \ni u = \sigma_U(\pi(u)) \cdot g_U(\pi(u)) \to (\pi(u), \psi_U(u)) =$ $(\pi(u), g_U(\pi(u)) \in U \times G$ is C^{∞} -diffeomorphic.

Now, assume that U and V are open neighbourhoods in M with $U \cap V \neq \emptyset$ such that $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are diffeomorphic with $U \times G$, and $V \times G$, respectively. Then $\sigma_V = \sigma_U \varphi_{UV}$ on $U \times V$, where $\varphi_{UV} : U \cap V \longrightarrow G$ is a transition function.

Moreover, $TP \supset \pi_*^{-1}(TU) \supset T_uP \ni B \xrightarrow{\Psi_*} (\pi_*(B), dg_U(c(t))/dt]_{t=0}) \in TU \times TG$ is C^{∞} -diffeomorphic, where B is the vector tangent to a curve $\alpha(t)$ at point $u = \alpha(0)$ in P such that $\alpha(t) = \sigma_U(c(t)) \cdot g_U(c(t))$ and $c(t) := \pi(\alpha(t))$. Then, $\sigma_U(c(t))g_U(c(t)) = \sigma_V(c(t))\varphi_{VU}(c(t))g_U(c(t)) = \sigma_V(c(t))g_V(c(t))$ and $dg_V/dt = (d\varphi_{VU}/dt) \cdot g_U + \varphi_{VU} \cdot (dg_U/dt) \equiv (d\varphi_{VU}/dt) \circ (dg_U/dt)$, where the operation \circ is the group operation on TG. Hence the differential $d\varphi_{UV}$ of φ_{UV} is a transition function which is defined on $TU \cap TV$. Thus we obtain

THEOREM 2.3. Let $P(M, G, \pi)$ be a principal fibre bundle. Then $TP(TM, TG, \pi_*)$ is a principal fibre bundle with group TG over the base manifold TM.

374

References

- F. Dillen, K. Nomizu and L. Vranken, Conjugate connections and Radon's theorem in affine differential geometry, Monat. Math. 109 (1990), 221-235.
- [2] S. Dragomir, T. Ichiyama and H. Urakawa, Yang-Mills theory and conjugate connections, Diff. Geom. Appl. 18 (2003), 229-238.
- [3] M. A. Guest, Geometry of maps between generalized flag manifolds, J. Diff. Geom. 25 (1987), 223-247.
- [4] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York (1978).
- [5] S. T. Hu, *Elements of Modern Algebra*, Holden-Day series in mathematics, San Francisco (1965).
- M. Itoh, Compact Einstein-Weyl manifolds and the associated constant, Osaka J. Math. 35 (1998), 567-578.
- [7] S. Kobayashi, Differential Geometry of Connections and Gauge Theory, Shokabo (in Japanese), Tokyo, 1990.
- [8] A.B. Madsen, H. Pedersen, Y.S. Poon and A. Swann, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434.
- [9] K. Nomizu and T. Sasaki, Affine Differential Geometry-Geometry of Affine Immersions, Cambridge, 1994.
- [10] J.-S Park, Stability of the identity maps of SU(3)/T(k,l), Tokyo J. Math. 17 (1994), 281-289.
- [11] J.-S. Park, New stable normal homogeneous Riemannian manifolds, Kyushu J. Math. 53 (1999), 407-419.
- [12] J.-S. Park, Yang-Mills connections in the orthonormal frame bundles over Einstein normal homogeneous manifolds, Int. J. of Pure & Appli. Math. 5 (2003), 213-223.
- [13] J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Interdisci. Inform. Sci. 11 (2005), 31-34.
- [14] J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math. 62 (2008), 217-220.
- [15] J.-S. Park, Yang-Mills connections with Weyl structure, to appear.
- [16] J.-S. Park, Projectively flat Yang-Mills connections, to appear.
- [17] H. Pedersen, Y.S. Poon and A. Swann, The Hitchin-Thorpe inequality for Einstein-Weyl manifolds, Bull. London Math. Soc. 26 (1994), 191-194.
- [18] H. Pedersen, Y.S. Poon and A. Swann, Einstein-Weyl deformations and submanifolds, Internat. J. Math. 7 (1996), 705-719.
- [19] H. Pedersen and A. Swann, Riemannian submersions, four-manifolds, and Einstein-Weyl geometry, Proc. London Math. Soc. 66 (1993), 381-399.
- [20] H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. reine angew. Math. 441 (1993), 99-113.
- [21] H. Pedersen and K.P. Tod, Three dimensional Einstein geometry, Adv. Math. 97 (1993), 74-109.
- [22] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992), 341-351.
- [23] H. Urakawa, Yang-Mills theory in Einstein-Weyl geometry and affine differential geometry, Rev. Bull. Calcutta Math. Soc. 10 (2002), 7-18.

Joon-Sik Park

Department of Mathematics Pusan University of Foreign Studies Pusan 55-1, Republic of Korea *E-mail*: iohpark@pufs.ac.kr

376

*