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ALGEBRAIC STRUCTURES IN A PRINCIPAL
FIBRE BUNDLE

Joon-Sik Park*

Abstract. Let P (M, G, π) =: P be a principal fibre bundle with
structure Lie group G over a base manifold M . In this paper we
get the following facts:

1. The tangent bundle TG of the structure Lie group G in
P (M, G, π) =: P is a Lie group.

2. The Lie algebra g = TeG is a normal subgroup of the Lie
group TG.

3. TP (TM, TG, π∗) =: TP is a principal fibre bundle with
structure Lie group TG and projection π∗ over base manifold TM ,
where π∗ is the differential map of the projection π of P onto M .

4. for a Lie group H, TH = H ◦ TeH = TeH ◦ H = TH and
H ∩ TeH = {e}, but H is not a normal subgroup of the group TH
in general.

1. Introduction

In this note, a general survey on the principal fibre bundle TP (TM,
TG, π∗) =: TP induced from a principal fibre bundle P (M,G, π) =: P
which is appeared in [7, p. 55] is explained in details. As by-products,
we obtain the following facts:

• the Lie algebra g = TeG is a normal subgroup of the Lie group TG.
• for a Lie group H, H ◦ TeH = TeH ◦H = TH and H ∩ TeH = {e},

but the subgroup H of the group TH is not a normal subgroup of TH
in general, and so the group TH and the product group H × TeH(=
TeH ×H) of H and TeH are not group-isomorphic in general.
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2. The proof of main results

Let M be a C∞-manifold and G a Lie group. A principal fibre bundle
over M with group G consists of a manifold P and an action of G on P
satisfying the following conditions:

(1) G acts freely on P on the right:

P ×G 3 (u, a) 7→ ua = Ra(u) ∈ P ;

(2) M is the quotient space of P by the equivalence relation by G,
M = P/G, and the canonial projection π : P →M is differentiable;

(3) P is locally trivial, that is, every point x of M has a neighbour-
hood U such that π−1(U) is isomorphic with U×G in the sense that there
is a diffeomorphism Ψ : π−1(U) → U ×G such that Ψ(u) = (π(u), ψ(u))
where ψ is a mapping of π−1(U) into G satisfying ψ(ua) = ψ(u) · a for
all u ∈ π−1(U) and a ∈ G.

A principal fibre bundle will be denoted by P (M,G, π), P (M,G) or
simply P . In general, we call P the total space or the bundle space, M
the base space, G the structure group and π the projection.

Given a mapping f of a manifold M into another manifold M
′
, the

differential at a point p(∈ M) of f is the liner mapping f∗ of TpM

into Tf(p)M
′

which is defined as follows. For each X ∈ TpM , choose
an integral curve x(t) of the vector X in M such that X is the vector
tangent to x(t) at p = x(t0). Then f∗(X) is the vector tangent to the
curve f(x(t)) at f(p) = f(x(t0)). It follows immediately that if g is a
function differentiable in a neighbourhood of f(p), then (f∗(X))(g) =
X(g ◦ f). We may also consider f∗ as the map of TM :=

⋃
p∈M

TpM into

TM
′
=

⋃
q∈M

′
TqM

′
.

A binary operation ◦ on the tangent bundle TG of a Lie group G can
be defined as follows:
For X ∈ TgG and Y ∈ Tg′G (g, g

′ ∈ G), choose curves x(t) and y(t)
in G such that X and Y are the vectors tangent to x(t) and y(t) at
g = x(t0) and g

′
= y(t0), respectively. Then X ◦ Y := Xg

′
+ gY :=

dRg′ (X) + dLg(Y ) ∈ Tgg′G ⊂ TG is the vector tangent to the curve
x(t) · y(t) at g · g′ = x(t0) · y(t0) ∈ G.

Then TG is a group with respect to the operation ◦ on TG which is
just defined. In fact, the zero vector Oe belonging to TeG is the identity
element of TG with respect to the operation ◦, where e is the identity
element of the Lie group G. For X ∈ TgG, Y ∈ ThG and Z ∈ TkG
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(g, h, k ∈ G), (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z). Moreover, with respect to the
operation ◦ on TG, the inverse element of X(∈ TgG) which is tangent to
a curve x(t) in G at g = x(t0) is the vector tangent to the curve x(t)−1

at g−1 = x(t0)
−1 ∈ G.

We may regard the Lie group G and its Lie algerbra g also as sub-
groups {Og|Og is the zero vector in TgG, g ∈ G} and TeG of the group
TG with the operation ◦. Moreover, for an arbitrary given g ∈ G and
an arbitrary given X beloing to the space TgG, X ◦TeG = TeG ◦X. So,
TeG = g is a normal subgroup of the Lie group TG.

For X ∈ TgG, X ◦G = {X ◦ k = Xk|k ∈ G} and G ◦X = {h ◦X =
hX|h ∈ G}. So, in general X ◦ G 6= G ◦ X. Hence, G is not a normal
subgroup of the group TG in general. Evidently, G ∩ TeG = {e}. And,
by the definition of the operation ◦ on TG, G ◦ TeG = TeG ◦G = TG.

Thus we have

Theorem 2.1. Let G be a Lie group. Then,
(1) the differential of the group operation of G × G into G is a group
operation on TG.
(2) the Lie group G is a subgroup of the Lie group TG.
(3) its Lie algebra g = TeG are a normal subgroup of the group TG.
(4) G ◦ TeG = TeG ◦ G = TG and G ∩ TeG = {e}, but in general G is
not a normal subgroup of TG.

Let H and K be two normal subgroups of a group X. Then, X
is said to be the direct product of the normal subgroups H and K iff
HK(= KH) = X and H ∩K = {e} ([5, p. 62]).

By virtue of the fact (4) of Theorem 2.1, we obtain

Corollary 2.2. For a Lie group G, TG = G◦TeG = TeG◦G = TG
and G∩TeG = {e}, but the group TG and the product group G×TeG(=
TeG×G) of G and TeG are not group-isomorphic in general.

A sequence of group homomorphisms

G1
f1→ G2

f2→ G3 → · · · fn−1→ Gn

is said to be exact if it is exact at each joint, i.e., if Imfi=Kerfi+1 for
each i = 1, 2, · · · , n− 2. And, we say that an exact sequence

G1
f1→ G2

f2→ G3 → · · · fn−1→ Gn

splits at the group Gi, (i = 2, 3, · · · , n− 1), iff the group Gi is the direct
product of Imfi−1=Kerfi and another normal subgroup ofGi. Moreover,
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if an exact sequence splits at each of its non-end groups, we say that it
splits (or, it is a split exact sequence) ([5, p. 71]).

There is the following problem in [7, Problem 4.1 in p. 55]:

Prove the fact that the following exact seguence splits;

0 ↪→ g = TeG ↪→ TG
π→ G→ 0.

Referring to the fact (4) of Theorem 2.1, it may be difficult for us to
prove the problem on split of the short exact sequence above. Probably,
I do not think that the exact sequence above splits in general.

The differential of the action of the group G on P (M,G, π) induces
the right action of the group TG on TP , (i.e., TP × TG→ TP ). Simi-
larly we may regard P as a subset of TP . Moreover, for A ∈ g ⊂ TG and
u ∈ P ⊂ TP, uA(∈ TP ) makes sense. In fact, uA = A∗u ∈ TuP , where
A∗ is the fundamental vector field corresponding to A (cf. [4, 7]). The
projection π : P → M and the group operation u : G × G → G induce
differentials π∗ : TP → TM and µ∗ : TG × TG = T (G × G) → TG.
Here, µ∗(= ◦) is the group operation on the Lie group TG.

Since P is local trivial, for each point x ∈ M there exists a proper
open neighbourhood U of the point x such that π−1(U) is diffeomorphic
with U×G. Then there exists a cross section σU of U into π−1(U)(⊂ P ).
Then Ψcπ−1(U) : π−1(U) 3 u = σU (π(u)) · gU (π(u)) → (π(u), ψU (u)) =
(π(u), gU (π(u)) ∈ U ×G is C∞-diffeomorphic.

Now, assume that U and V are open neighbourhoods in M with
U ∩V 6= ∅ such that π−1(U) and π−1(V ) are diffeomorphic with U ×G,
and V × G, respectively. Then σV = σUϕUV on U × V , where ϕUV :
U ∩ V −→ G is a transition function.

Moreover, TP ⊃ π−1
∗ (TU) ⊃ TuP 3 B Ψ∗→ (π∗(B), dgU (c(t))/dtct=0) ∈

TU ×TG is C∞-diffeomorphic, where B is the vector tangent to a curve
α(t) at point u = α(0) in P such that α(t) = σU (c(t)) · gU (c(t)) and
c(t) := π(α(t)). Then, σU (c(t))gU (c(t)) = σV (c(t))ϕV U (c(t))gU (c(t)) =
σV (c(t))gV (c(t)) and dgV /dt = (dϕV U/dt) · gU + ϕV U · (dgU/dt) ≡
(dϕV U/dt) ◦ (dgU/dt), where the operation ◦ is the group operation on
TG. Hence the differential dϕUV of ϕUV is a transition function which
is defined on TU ∩ TV . Thus we obtain

Theorem 2.3. Let P (M,G, π) be a principal fibre bundle. Then
TP (TM, TG, π∗) is a principal fibre bundle with group TG over the
base manifold TM .
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