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AN UPPER BOUND OF THE RECIPROCAL SUMS OF
GENERALIZED SUBSET-SUM-DISTINCT SEQUENCE

JAEGUG BAE*

ABSTRACT. In this paper, we present an upper bound of the reciprocal
sums of generalized subset-sum-distinct sequences with respect to the first
terms of the sequences. And we show the suggested upper bound is best
possible. This is a kind of generalization of [1] which contains similar result
for classical subset-sum-distinct sequences.

Introduction

We call an infinte strictly increasing sequence of positive integers a subset-

sum-distinct sequence if every one of its finite subsets is uniquely determined

by its sum. This traditional concept has been extenced to a generalized

subset-sum-distinct sequence in [3] and [4]. Here we give the precise defini-

tion.

(i)

(i)

DEFINITION 1.1.

For aset A of real numbers, we say that A has the k-fold subset-sum-
distinct property (briefly k-SSD-property) if for any two finite subsets
X, Y of A,

Zew X = Zey-y for some €, €, € {1,2,--- ,k} implies X =Y.
zeX yeY

Also, we say that A is k-SSD or A is a k-SSD-set if it has the k-
SSD-property.

An increasing sequence of positive integers {a,}, is called a k-fold

subset-sum-distinct sequence (briefly, k-SSD-sequence) if it has the k-SSD-

property.
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For example, {109,147,161, 166,168,169} is 2-SSD. In fact, it is the
unique 2-SSD-set which has the least maximal element among all 2-SSD-
sets of six elements of positive integers (See [3] or [4]). A classical subset-
sum-distinct sequence is just a 1-SSD-sequence. Note that the greedy algo-
rithm produces the k-SSD-sequence 1,k + 1, (k+1)2, (k+1)3,--- .

After a little preliminaries in the next section, for a k-SSD-sequence
{a,}52,, we present an upper bound of "7 | i with respect to a;. This
sort of reciprocal sum has been widely investigated for classical subset-sum-
distinct sequence (see [1], [2], [3], [11]).

Regarding classical SSD-sequences, the most famous unsolved problem is
Erdos’ conjecture on a lower bound of the n-th term. For this subject, one
may refer [6], [7], [8], [9]. For another widely known Conway-Guy conjecture,
which is now a theorem proved by T. Bowman [5] in 1996, one may consult
[4], [5], [10], [12].

2. Preliminaries
The following four lemmas will be used in the proof of the main theorems

of the paper.
LEMMA 2.1. Let {an}s>, be a k-SSD-sequence. Then

(k+1)"—1

a1+a2+"‘+an2 2

for every n>1.
Proof. See Lemma 2.2 in [3]. O

LEMMA 2.2. If {b1,ba, by, b} is k-SSD and K > k(by + by + -+
bm), then also the set

A::{K+b1,K+bz,K+bg,"',K+bm}

is k-SSD.

Proof. Suppose that A isnot k-SSD. By definition, there are two distinct
subsets I, J of {1,2,3,---,m} suchthat >, ;& (K+b;) = >, ;ei(K+
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b;) where €, ¢ € {1,2,--- ,k}. Since {b1,bs,--- by} is k-SSD, we have

dicr € # D jeg €j- S0, one may assume » . ;€; > > . €. But then we

have

K<Y eg->ealK
jeJ i€l
= Zﬁibi—zejbj < k(b +by4 -+ bp) < K,
iel jeJ
a clear contradiction. O

Other two lemmas are from trivial observations on calculus.

LEMMA 2.3. Let f and g are decreasing functions on an interval.
Then
(i) «a-f+ B-g is also decreasing for fixed o> 0, > 0.

(ii)) f - g is decreasing if f, g are both nonnegative on the interval.

Proof. (i) is obvious. For (ii), let x, y be in the interval with z <
y. Then

f@)g(x) — f(y)g(y) = f(z) (g(z) — 9(y)) + g(y) (f(z) — f(y)) < 0.

LEMMA 2.4. The function
~ log(2x)
J(@) = log(z + 1)

is positive decreasing on [4,00).

Proof. Differentiating f, we have
x4+ 1)log(x + 1) — zlog(2x
oy 2+ Dlogo 1) — slog(20)
z(r +1)
Hence it’s enough to show that (z+1)log(z+1) < xzlog(2z) on [4,00). Observe
that

(x4 1)log(x + 1) < xzlog(2x)

1\* 2%
= (z4+1)" < (22)° = (14+-) < .
T z+1
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But the last inequality follows immediately from the fact that 2%/(z+1) is
increasing on [4,00) and, for z > 4,

1\* 16 2%
1+—-) <e<—< :
T 5 r+1

3. An upper bound
Now we present a kind of optimal upper bound of >, ai for k-SSD-
sequences {a,}2° ;. The first theorem states the upper bound and the sec-

ond one shows the optimality.

THEOREM 3.1. Let a={a,},., be a k-SSD-sequence with a; > 1.

Then
=1 log aq
Lo
n=1 an a1

where C is either of

. 2 2k log(2k)
= 1 tant that d d k
(i) C Tog 2 + (Zk‘—l)log(k‘—i—l)) a constant that depends on k,
(ii) C = 1022, an absolute constant.
Proof. Let bj = azj —agj—1 for j=1,2,3,---. Since the sequence a

is k-SSD, the set {b1,bs,bs,---} is k-SSD too. We claim that
(31) 2541 > a1+b1—|—b2+---+bj, j:1,2,3,---.
We use induction on j. Since, by definition, b1 = as — a;, we have az >

as = aj; + by which satisfies the claim (3.1) for j =1. Now assume that

2541 > a1+b1+b2+"'+bj.

By deﬁnition, bj+1 = a2j+2 — a2j+1 s and so a2j+2 = a2j+1 + bj+1 . Thus
Qgjt+s > G542 =agjy1 +bjp1 > ar+bi+ba+--+bj+bj

and this completes the proof of the claim (3.1). Applying Lemma 2.1 to the

set {b1,b2,b3,---b;}, we obtain

k+1) —1
a2j+1 > a1—|—b1—|—b2—|—-~—|—bj 2 al—l—i( )
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for j=0,1,2,3,---. Therefore we have

=1 > 1 1 =1
o = Llantmn) 522
n= J

iTo \@2j+1  G2j+42 o A2j+1

- k > k
< 2 - < —4+2- d
- ;)kal—i—(k—i—l)ﬂ—l *a1+ /0 ka; + (k+1)* — 1 v
2 2k log(kay) log aq
o a1 + log(k + 1) k:al -1 N g(al) ajq
where
ox (2 2k log(kx)
9(x) = log © (x * (kz — 1) log(k + 1))

2 n 2klogk T n 2k x
"~ logx  log(k+1) (kx—1)logx log(k+1) (kx—1)

Since @ and ﬁ = % (1 + ﬁ) are positive decreasing on [2,00), by
Lemma 2.3, g(x) is decreasing on [2,00). Hence
_ 2 (1 N 2k log(2k) >
log 2 (2k —1)log(k + 1)
and we may take C asin (i). To obtain the absolute constant in (ii), let
2k log(2k)
(2k — 1) log(k + 1)
Note 2x/(2x — 1) is positive decreasing on [1,00) and, by Lemma 2.4,
log(2x)
log(xz + 1)

is decreasing on [4,00). Applying Lemma 2.3, we have

gla1) < g(2)

h(k) =

max {h(k) : k=1,2,3,---} = max{h(1),h(2), h(3), h(4)}

which is h(1) = 2 by calculation. Thus
2
<g(2) = 1 <
glar) < 9(2) = s (14 Ak < o
and we can take C = 6/log?2. O

Finally, we show that the inequality in Theorem 3.1 is essentially best

possible in the following sense:
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THEOREM 3.2. Let f(z) be a positive real valued function that is de-
fined on (1,00) such that

log

(3.2) f(z)

X

as x — oo. Then for any T > 0, there exists a k-SSD-sequence
{an}S>, such that

1
ap > 1 and f(al)za— > T.

n=1

Proof. For k-SSD-sequences a(l), a(2), a(3), ---, let us use the nota-

tions
a(m) ={amn}yey for m=1,23---.

We are to construct k-SSD-sequences a(m) for m = 1,2,3,--- so that

am1 > 1 and

as m — oco. Weknow {1,k+1,(k+1)% (k+1)3,- -, (k+1)™"1} is k-
SSD. Applying Lemma 2.2 with K = (k+1)™, we obtain k-SSD property
of the set

(K+1,K+(k+1),K+(k+1)%-- K+ (k+1)""}.

Now, for a given positive integer m, we define

K+k+1D)" 1t if 1<n<m

— n—1

(k‘—l—l)Zami, it n>m.

i=1

amn

From the construction, it’s obvious that a(m) is k-SSD and a,,; > 1.
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Moreover,
aml Z > f aml Z
n:l n=1 Amn
“ 1

= fom) X
> flams) [ : d

a x
= U g + (k1) — 1
B 1 log a,,1 — log 2
= J(am) log(k +1) 1 — 1

log a,,
> o flam) - —22mt
m1

for some positive «. Thus the theorem follows from (3.2) since a1 =

(k+1)"4+1 — 00 as m — 0.

g
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