
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 21, No. 2, June 2008

DOUGLAS SPACES OF THE SECOND KIND OF FINSLER
SPACE WITH A MATSUMOTO METRIC

Il-Yong Lee*

Abstract. In the present paper, first we define a Douglas space of the
second kind of a Finsler space with an (α, β)-metric. Next we find the
conditions that the Finsler space with an (α, β)-metric be a Douglas space
of the second kind and the Finsler space with a Matsumoto metric be a
Douglas space of the second kind.

1. Introduction

The notion of Douglas space was introduced by S. Bácsó and M. Mat-

sumoto [4] as a generalization of Berwald space from viewpoint of geodesic

equations. Also, we consider the notion of Landsberg space as a general-

ization of Berwald space. Recently, the notion of weakly-Berwald space as

another generalization of Berwald space was introduced by S. Bácsó and B.

Szilágyi [5]. It is remarkable that a Finsler space is a Douglas space if and

only if the Douglas tensor Di
h

jk vanishes identically [6].

The theories of Finsler spaces with an (α, β)-metric have contributed to

the development of Finsler geometry [11], and Berwald spaces with an (α, β)-

metric have been treated by some authors ([1], [10], [13]).

The purpose of the present paper is to give another different definition of

a Douglas space of the Finsler space with an (α, β)-metric, on the basis of

the difinition of a Douglas space introduced by M. Matsumoto [12]. Then

the Douglas space obtained by a different definition is called a Douglas space

of the second kind.
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Let us define a Douglas space of the second kind. A Finsler space Fn is

said to be a Douglas space if Dij = Gi(x, y)yj−Gj(x, y)yi are homogeneous

polynomials in (yi) of degree three. Then a Finsler space Fn is said to be a

Douglas space of the second kind if and only if Dim
m = (n + 1)Gi −Gm

myi

are homogeneous polynomials in (yi) of degree two. On the other hand, in

[12] a Finsler space with an (α, β)-metric is a Douglas space if and only if

Bij = Biyj − Bjyi are homegeneous polynomials in (yi) of degree three.

Then a Finsler space of an (α, β)-metric is said to be a Douglas space of the

second kind if and only if Bim
m = (n + 1)Bi − Bm

myi are homogeneous

polynomials in (yi) of degree two, where Bm
m is given by [8](Theoem 2.1).

The present paper is devoted to defining a Douglas space of the second

kind of Finsler space with an (α, β)-metric and studying the condition that

a Finsler space of an (α, β)-metric be a Douglas space of the second kind

(Theorem 3.1). Next we find the condition that Finsler spaces with a Mat-

sumoto metric α2/(α− β) be a Douglas space of the second kind (Theorem

4.1).

2. Preliminaries

Let Fn = (Mn, L(α, β)) be said to have an (α, β)-metric, if L(α, β)

is a postively homogeneous function of (α, β) of degree one, where α2 =

aij(x)yiyj and β = bi(x)yi. The space Rn = (Mn, α) is called the Rie-

mannian space associated with Fn ([2], [11]). In Rn we have the Christoffel

symbols γj
i
k(x) and the covariant differentiation (; ) with respect to γj

i
k.

We shall use the symbols as follows:

bi = airbr, b2 = arsbrbs,

2rij = bi;j + bj;i, 2sij = bi;j − bj;i,

ri
j = airrrj , si

j = airsrj , ri = brr
r
i, si = brs

r
i.

The Berwald connection BΓ = {Gj
i
k, Gi

j} of Fn plays one of the leading

roles in the present paper. Denote by Bj
i
k the difference tensor [10] of Gj

i
k

from γj
i
k:

Gj
i
k(x, y) = γj

i
k(x) + Bj

i
k(x, y).
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With the subscript 0, transvection by yi, we have

Gi
j = γ0

i
j + Bi

j and 2Gi = γ0
i
0 + 2Bi,

and then Bi
j = ∂̇jB

i and Bj
i
k = ∂̇kBi

j .

The geodesics of a Finsler space Fn are given by the system of differential

equations

ẍiẋj − ẍj ẋi + 2(Gixj −Gjxi) = 0, yi = ẋi,

in a parameter t. The functions Gi(x, y) are given by

2Gi(x, y) = gij(yr∂̇j∂rF − ∂jF ) = {j
i
k}yjyk,

where F = L2/2 and {j
i
k} are Christoffel symbols constructed from gij(x, y)

with respect to xi.

It is shown [4] that Fn is a Douglas space if and only if the Douglas tensor

[6]

Di
h

jk = Gi
h

jk − 1
n + 1

(Gijkyh + Gijδ
h
k + Gjkδh

i + Gkiδ
h
j )

vanishes identically, where Gi
h

jk = ∂̇kGi
h

j is the hv-curvature tensor of the

Berwald connection BΓ [11].

Fn is said to be a Douglas space [4] if

(2.1) Dij = Gi(x, y)yj −Gj(x, y)yi

are homogeneous polynomials in (yi) of degree three. Differentiating (2.1)

with respect to yh, yk, yp and yq, we have Dij
hkpq = 0, which are equivalent

of Dim
hkpm = (n + 1)Dh

i
kp = 0. Thus if a Finsler space Fn satisfies the

condition Dij
hkpq = 0, which are equivalent to Dim

hkpm = (n+1)Dh
i
kp = 0, we

call it a Douglas space. Further differentiating (2.1) by ym and contacting

m and j in the obtained equation, we have Dim
m = (n + 1)Gi − Gm

myi.

Thus Fn is said to be a Douglas space of the second kind if and only if

(2.2) Dim
m = (n + 1)Gi −Gm

myi

are homogeneous polynomials in (yi) of degree two. Furthermore differenti-

ating (2.2) with respect to yh, yj and yk, we get Dim
hjkm = (n + 1)Di

hjk = 0.

Therefore we have
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Definition 2.1. If a Finsler space Fn satisfies the condition that Dim
m =

(n + 1)Gi −Gm
myi be homogeneous polynomials in (yi) of degree two, we

call it a Douglas space of the second kind.

On the other hand, a Finsler space of an (α, β)-metric is said to be a

Douglas space of the second kind if and only if

Bim
m = (n + 1)Bi −Bm

myi

are homogeneous polynomials in (yi) of degree two, where Bm
m is given

by [8]. Furthermore differentiating the above with respect to yh, yj and

yk. we get Bim
hjkm = Bi

hjk = 0. Therefore if a Finsler space Fn with an

(α, β)-metric satisfies the condition Bim
hjkm = Bi

hjk = 0, we call it a Douglas

space of the second kind.

Since L = L(α, β) is a positively homogeneous function of α and β of

degree one, we have

(2.3)

Lαα + Lββ = L, Lααα + Lαββ = 0,

Lβαα + Lβββ = 0, Lαααα + Lααββ = −Lαα,

Lα = ∂L/∂α, Lβ = ∂L/∂β, Lαα = ∂2L/∂α∂α,

Lαβ = Lβα = ∂2L/∂α∂β, Lααα = ∂3L/∂α∂α∂α.

Here we state the following lemma and remark for the later frequent use:

Lemma 2.2 [3]. If α2 ≡ 0 (mod β), that is, aij(x)yiyj contains bi(x)yi

as a factor, then the dimension is equal to two and b2 vanishes. In this case

we have δ = di(x)yi satisfying α2 = βδ and dib
i = 2.

Remark 2.3. Throughout the present paper, we say “homogeneous poly-

nomial(s) in (yi) of degree r”as hp(r) for brevity. Thus γ0
i
0 is hp(2) and,

if the Finsler space with an (α, β)-metric is a Douglas space of the second

kind, then Bim
m is hp(2).

3. Douglas space of the second kind with (α, β)-metric

In the present section, we deal with the condition that a Finsler space

with an (α, β)-metric be a Douglas space of the second kind.
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Let us consider the function Gi(x, y) of Fn with an (α, β)-metric. Ac-

cording to ([10], [11]), they are written in the form

(3.1)
2Gi = γ0

i
0 + 2Bi,

Bi = (E/α)yi + (αLβ/Lα)si
0 − (αLαα/Lα)C∗{(yi/α)− (α/β)bi},

where we put

E = (βLβ/L)C∗,

C∗ = {αβ(r00Lα − 2αs0Lβ)}/{2(β2Lα + αγ2Lαα)},
γ2 = b2α2 − β2.

Since γ0
i
0 = γj

i
k(x)yiyj is hp(2), by means of (2.1) and (3.1) we have as

follows [12]: A Finsler space Fn with an (α, β)-metric is a Douglas space if

and only if Bij = Biyj −Bjyi are hp(3). (2.1) gives

(3.2) Bij =
αLβ

Lα
(si

0y
j − sj

0y
i) +

α2Lαα

βLα
C∗(biyj − bjyi).

Then differentiating (3.2) by ym and contracting m and j in the obtained

equation, we have

(3.3)

Bim
m

= ∂̇m

(
αLβ

Lα

)
(si

0y
m − sm

0y
i) +

αLβ

Lα
∂̇m(si

0y
m − sm

0y
i)

+ ∂̇m

(
α2Lαα

βLα

)
C∗(biym − bmyi) +

α2Lαα

βLα
(∂̇mC∗)(biym − bmyi)

+
α2Lαα

βLα
C∗∂̇m(biym − bmyi).

Making use of (2.2) and the homogeneity of (yi), we obtain

(3.4) ∂̇m

(
αLβ

Lα

)
(si

0y
m − sm

0y
i) =

(
αLβ

Lα

)
si

0 − α2LLααs0

(βLα)2
yi,

(3.5)
αLβ

Lα
∂̇m(si

0y
m − sm

0y
i) =

nαLβ

Lα
si

0,
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(3.6)
∂̇m

(
α2Lαα

βLα

)
(biym − bmyi)C∗

=
γ2{αLαLααα + (2Lα − αLαα)Lαα}C∗

(βLα)2
yi,

(3.7) (∂̇mC∗)ym = 2C∗,

(3.8)

(∂̇mC∗)bm =
1

2αβΩ2

[
Ω

{
β(γ2 + 2β2)M + 2α2β2Lαr0

− αβγ2Lααr00 − 2α(β3Lβ + α2γ2Lαα)s0

}

− α2βM{2b2β2Lα − γ4Lααα − b2αγ2Lαα}
]
,

(3.9)
α2Lαα

βLα
C∗∂̇m(biym − bmyi) =

(n− 1)α2LααC∗

βLα
bi,

where

(3.10)

M = (r00Lα − 2αs0Lβ),

Ω = (β2Lα + αγ2Lαα), provided that Ω 6= 0,

Yi = airy
r, s00 = 0, brsr = 0, aijsij = 0.

Substituting (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) into (3.3), we have

(3.11)
Bim

m =
(n + 1)αLβ

Lα
si

0 +
α{(n + 1)α2ΩLααbi + βγ2Ayi}

2Ω2
r00

− α2{(n + 1)α2ΩLβLααbi + Byi}
LαΩ2

s0 − α3Lααyi

Ω
r0,

where

(3.12)

A = αLαLααα + 3LαLαα − 3α(Lαα)2,

B = αβγ2LαLβLααα + β{(3γ2 − β2)Lα − 4αγ2Lαα}LβLαα

+ ΩLLαα.

Summarizing up the above, we establish

Theorem 3.1. The necessary and sufficient condition for a Finsler

space Fn with an (α, β)-metric to be a Douglas space of the second kind

is that Bim
m are homogeneous polynomials in (ym) of degree two, where

Bim
m is given by (3.11) and (3.12), provided that Ω 6= 0.
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4. Matsumoto space

In the present paper, we consider the condition that Matsumoto space

Fn be a Douglas space of the second kind. The notion of this space was

originally introduced by M. Matsumoto [9]. The metric of Fn is L = α2/(α−
β). Then we get

(4.1)

Lα = α(α− 2β)/(α− β)2, Lβ = α2/(α− β)2,

Lαα = 2β2/(α− β)3, Lααα = −6β2/(α− β)4,

Ω = αβ2{(1 + 2b2)α2 − 3αβ}/(α− β)3.
Substituting (4.1) into (3.12), we have

(4.2)
A = − 6α2β3/(α− β)6,

B = 2α4β4{(1− b2)α2 − (5 + 4b2)αβ + 9β2}/(α− β)8.
Further substituting (4.1) and (4.2) into (3.11), we get

(4.3)

α(α− 2β){(1 + 2b2)α− 3β}2Bim
m

− (n + 1)α3{(1 + 2b2)α− 3β}2si
0

− (α− 2β)[(n + 1)α2{(1 + 2b2)α− 3β}bi − 3γ2yi]r00

+ 2α2[(n + 1)α2{(1 + 2b2)α− 3β}bi

+ {(1− b2)α2 − (5 + 4b2)αβ + 9β2}yi]s0

+ 2α2(α− 2β){(1 + 2b2)α− 3β}yir0 = 0.

Suppose that Fn be a Douglas space of the second kind, that is, Bim
m be

hp(2). Since α is irrational in (yi), (4.3) is divided two equations as follows:

(4.4)

α2{(1 + 2b2)2α2 + 3(7 + 8b2)β2}Bim
m + 6(n + 1)(1 + 2b2)α4βsi

0

− [(n + 1)α2{(1 + 2b2)α2 + 6β2}bi + 6βγ2yi]r00

− 2α2[3(n + 1)α2βbi − {(1− b2)α2 + 9β2}yi]s0

+ 2α2{(1 + 2b2)α2 + 6β2}yir0 = 0,

(4.5)

β{4(1 + 2b2)(2 + b2)α2 + 18β2}Bim
m

+ (n + 1)α2{(1 + 2b2)2α2 + 9β2}si
0

− {(n + 1)(5 + 4b2)α2βbi + 3γ2yi}r00

− α2{2(n + 1)(1 + 2b2)α2bi − 2(5 + 4b2)βyi}s0

+ 2(5 + 4b2)α2βyir0 = 0.
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Since only the term 6β3yir00 of (4.4) seemingly does not contain α2, we must

have hp(4) V i
4 such that β3yir00 = α2V i

4 . First we deal with the general

case α2 6≡ 0 (mod β), that is, n > 2. Then there exists a function f(x) such

that

(4.6) r00 = α2f(x); rij = aijf(x).

Transvection by biyj leads to

(4.7) r0 = βf(x); rj = bjf(x).

Since the terms 3β2(6βBim
m + yir00) of (4.5) seemingly do not contain α2,

there must exist hp(3) U i
3 such that

(4.8) 3β2(6βBim
m + yir00) = α2U i

3.

The above shows there exists hp(1) U i = U i
k(x)yk satisfying U i

3 = β2U i,

and hence (4.8) is redeced to

(4.8′) 3(6βBim
m + yir00) = α2U i.

Substituting (4.6) into (4.8′), we have 18βBim
m = α2(U i − 3f(x)yi). Thus

from α2 6≡ 0 (mod β) there exists a function gi(x) such that U i− 3f(x)yi =

18gi(x)β, where gi = gi(x), which gives

(4.8′′) Bim
m = α2gi(x).

Substituting (4.6) and (4.8′′) into (4.4), we have

(4.9)

α2{(1 + 2b2)α2 + 3(7 + 8b2)β2}gi(x) + 6(n + 1)(1 + 2b2)α2βsi
0

− f(x)[(n + 1)α2{(1 + 2b2)α2 + 6β2}bi + 6βγ2yi]

− 2[3(n + 1)α2βbi − {(1− b2)α2 + 9β2}yi]s0

+ 2f(x)β{(1 + 2b2)α2 + 6β2}yi = 0.

The terms 18β2(f(x)β + s0)yi of (4.9) seemingly do not contain α2. Thus

we can put 18β2(f(x)β + s0)yi = α2V i
2, where V i

2 is hp(2). If V i
2 =

hi(x)β2, then we have 18(f(x)β + s0)yi = hi(x)α2. Transvection by bi



Douglas spaces of the second kind of Finsler space with a Matsumoto metric 217

yields 18(f(x)β + s0) = hbα
2, where bih

i = hb. Thus we obtain hb = 0, that

is, f(x)β + s0 = 0, which leads to

(4.10) s0 = −f(x)β.

Substituting (4.6), (4.7), (4.8′′) and (4.10) into (4.5), we have

(4.11)

β{4(1 + 2b2)(2 + b2)α2 + 18β2}gi

+ (n + 1){(1 + 2b2)2α2 + 9β2}si
0

− f(x){(n + 1)(5 + 4b2)α2βbi + 3γ2yi}
+ f(x){2(n + 1)(1 + 2b2)α2bi

− 2(5 + 4b2)βyi}β + 2f(x)(5 + 4b2)β2yi = 0.

Only the term 3(6βgi + 3(n + 1)si
0 + f(x)yi)β2 of (4.11) seemingly does

not contain α2, and hence we must have hp(1) V i such that 3(6βgi + 3(n +

1)si
0 + f(x)yi)β2 = α2V i. From α2 6≡ 0 (mod β) it follows that V i must

vanish, and hence

(4.12) 3(n + 1)si
0 = −(6βgi + f(x)yi).

Differentiating (4.12) with respect to yj and transvecting the obtained equa-

tion by aim, we have 3(n+1)smj = −(6gmbj +f(x)amj), where aimgi = gm.

Hence 3(n + 1)(smj − sjm) = −6(gmbj − gjbm), which imply

(4.13) sij =
1

n + 1
(bigj − bjgi).

Transvection by biyj yields (n + 1)s0 = b2W − gbβ, where we put W = gjy
j

and gb = bigi. From (4.10) we obtain b2W = {gb − (n + 1)f(x)}β; b2gj =

{gb− (n + 1)f(x)}bj . Tansvection by bj leads to f(x) = 0. Substituting the

above into (4.6), we have

(4.14) r00 = 0; rij = 0.

Transvecting (4.13) by bibj , we have (n + 1)s0 = b2W − gbβ. Thus from

s0 = 0, we obtain b2W = gbβ.
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Conversely substituting f(x) = 0, (4.7), (4.10), (4.13) and (4.14) into

(4.3), we have (α− 2β)Bim
m = b2α2(biW − giβ). Transvection by Yi leads

to B0m
m = 0, that is, Bim

m is a Douglas space of the second kind.

Next we are concerned with α2 ≡ 0 (mod β), that is, Lemma 2.2 shows

that n = 2, α2 = βδ, δ = di(x)yi, b2 = 0 and bidi = 2. (4.4) and (4.5) are

reduced in the forms respectively

(4.15)
δ(21β + δ)Bim

m + 18βδ2si
0 − 3{δ(6β + δ)bi − 2βyi}r00

− 2δ{9βδbi − (9β + δ)yi}s0 + 2δ(6β + δ)yir0 = 0,

(4.16)
2(9β + 4δ)Bim

m + 3δ(9β + δ)si
0 − 3(5δbi − yi)r00

− 2δ(3δbi − 5yi)s0 + 10δyir0 = 0.

Since only the term 6βyir00 of (4.15) seemingly does not contain δ, there

must exist hp(1) V = Vi(x)yi such that

(4.17) r00 = δV ; 2rij = diVj + djVi.

Transvection by biyj gives

(4.18) 2r0 = 2V + Vbδ, Vb = biVi.

Paying attention to the terms of (4.16) which seeming do not contain δ, we

can put

18βBim
m + 3yir00 = δV i

2,

where V i
2 is hp(2). Substitution by (4.17) leads to

(4.19) Bim
m = δU i,

where U i is hp(1) and V i
2− 3yiV = 18βU i. Substituting (4.17), (4.18) and

(4.19) into (4.15), we obtain

(4.20)
δ(21β + δ)U i + 18βδsi

0 − 3{δ(6β + δ)bi − 2βyi}V
− 2{9βδbi − (9β + δ)yi}s0 + (6β + δ) (2V + Vbδ) yi = 0.
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Since the terms 18βyi(V + s0) of (4.20) seemingly do not contain δ, there

must exist a function h(x) such that

(4.21) s0 = h(x)δ − V.

Further substituting (4.17), (4.18), (4.19) and (4.21) into (4.16), we have

(4.22)
2(9β + 4δ)U i + 3(9β + δ)si

0 − 3{5δbi − yi}V
− 2(3δbi − 5yi)(h(x)δ − V ) + 5(2V + Vbδ)yi = 0.

Since the dimension is equal to two and (β, δ) are independant pairs, we can

put V = p(x)β+q(x)δ and U i = hi(x)β+ki(x)δ where p(x), q(x), hi(x) and

ki(x) are scalar functions. Substitution by V = p(x)β +q(x)δ and the terms

3β{6U i + 9si
0 + p(x)yi} of the obtained equation seemingly do not contain

δ. Thus there exists function gi(x) satisfying 9si
0 + 6U i + p(x)yi = δgi(x).

Paying attention to U i = hiβ + kiδ, we obtain

(4.23)
9si

0 = gi(x)δ − p(x)yi − 6hi(x)β;

9si
j = gi(x)dj − p(x)δi

j − 6hi(x)bj .

Paying attention to 2aij = bidj + bjdi and transvecting (4.23) by aim, we

have

(4.24) 9sij =
{

gi − 1
2
p(x)bi

}
dj −

{
1
2
p(x)di + 6hi

}
bj ,

where aimgi = gm and aimhi = hm.

Transvecting (4.24) by biyj , we have

9s0 = gbδ − (p(x) + 6hb)β,

where we put bigi = gb and bihi = hb. Substituting (4.21) into the above,

we obtain
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(4.25) 9V = (9h(x)− gb)δ + (p(x) + 6hb)β.

Summarizing up the above, we obtain

Theorem 4.1. A Matsumoto space with the metric L = α2/(α − β)

is a Douglas space of the second kind, if and only if

(1) α2 6≡ 0 (mod β) : (4.13) and (4.14) are satisfied, where b2W = gbβ,

(2) α2 ≡ 0 (mod β) : n = 2 and (4.17) and (4.24) are satisfied, where

α2 = βδ, δ = di(x)yi, and p(x), hi(x), gi(x) are scalar functions and V is

given by (4.25).
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