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DOUGLAS SPACES OF THE SECOND KIND OF FINSLER
SPACE WITH A MATSUMOTO METRIC

IL-YoNG LEE*

ABSTRACT. In the present paper, first we define a Douglas space of the
second kind of a Finsler space with an (a,3)-metric. Next we find the
conditions that the Finsler space with an («a, 3)-metric be a Douglas space
of the second kind and the Finsler space with a Matsumoto metric be a
Douglas space of the second kind.

1. Introduction

The notion of Douglas space was introduced by S. Bacsé and M. Mat-
sumoto [4] as a generalization of Berwald space from viewpoint of geodesic
equations. Also, we consider the notion of Landsberg space as a general-
ization of Berwald space. Recently, the notion of weakly-Berwald space as
another generalization of Berwald space was introduced by S. Bacsé and B.
Szilagyi [5]. It is remarkable that a Finsler space is a Douglas space if and
only if the Douglas tensor D;" ;). vanishes identically [6].

The theories of Finsler spaces with an («, 3)-metric have contributed to
the development of Finsler geometry [11], and Berwald spaces with an («, 3)-
metric have been treated by some authors ([1], [10], [13]).

The purpose of the present paper is to give another different definition of
a Douglas space of the Finsler space with an («, 3)-metric, on the basis of
the difinition of a Douglas space introduced by M. Matsumoto [12]. Then
the Douglas space obtained by a different definition is called a Douglas space
of the second kind.

" This paper is supported by Kyungsung University Rescarch Grant in 2008.

Received March 27, 2008; Accepted May 21, 2008.

2000 Mathematics Subject Classifications: Primary 53B40.

Key words and phrases: Berwald space, Douglas space, Dougals space of the second
kind, Finsler space, Landsberg space, Matsumoto metric.



210 Il-Yong Lee

Let us define a Douglas space of the second kind. A Finsler space F is
said to be a Douglas space if D = G*(z,y)y’ — G’ (z,y)y"* are homogeneous
polynomials in (y°) of degree three. Then a Finsler space F™ is said to be a
Douglas space of the second kind if and only if D™, = (n +1)G* — G™,,,y°
are homogeneous polynomials in (y°) of degree two. On the other hand, in
[12] a Finsler space with an («, 8)-metric is a Douglas space if and only if
B% = B'yJ — BJy" are homegeneous polynomials in (y%) of degree three.
Then a Finsler space of an («, 3)-metric is said to be a Douglas space of the
second kind if and only if B™,, = (n + 1)B* — B™,,3" are homogeneous
polynomials in (y*) of degree two, where B™,, is given by [8](Theoem 2.1).

The present paper is devoted to defining a Douglas space of the second
kind of Finsler space with an (a, 3)-metric and studying the condition that
a Finsler space of an («, §)-metric be a Douglas space of the second kind
(Theorem 3.1). Next we find the condition that Finsler spaces with a Mat-
sumoto metric a?/(a — 3) be a Douglas space of the second kind (Theorem
4.1).

2. Preliminaries

Let F"* = (M",L(a,3)) be said to have an («,)-metric, if L(a, )
is a postively homogeneous function of (,3) of degree one, where a? =
aij(z)y'y’ and B = b;(x)y’. The space R" = (M",«) is called the Rie-
mannian space associated with F™ ([2], [11]). In R™ we have the Christoffel
symbols 7;°;(z) and the covariant differentiation (;) with respect to ;.

We shall use the symbols as follows:
b =a'b,, b =a"%b,bs,
2rij = biyj + g, 2805 = bigj — by,

T _ar 1 _ar _ r _ r
r'y=a""r., s;=a"s.,;, ri=>br"y, s;=>0b.5";.

The Berwald connection BT = {G;"j, G*;} of F™ plays one of the leading
roles in the present paper. Denote by sz‘ 1. the difference tensor [10] of sz‘ k
from ;%

G'k(z,y) = v'k(®) + Bj'k(z,y).



Douglas spaces of the second kind of Finsler space with a Matsumoto metric 211

With the subscript 0, transvection by y*, we have
Gij = ’}/Oij + Bi]' and 2G' = ’)/Oig + 2BZ,
and then Bij = é'?jBi and sz‘k = akBij.
The geodesics of a Finsler space F'™ are given by the system of differential
equations
#ad — #i 4+ 2(Gl! — i) =0, y' =i,
in a parameter t. The functions G*(x,y) are given by
2G" (x,y) = 9" (y" 0;0.F — ;F) = {;"+ }y’y",
where F' = L?/2 and {;%;} are Christoffel symbols constructed from g;;(x,y)
with respect to .
It is shown [4] that F'™ is a Douglas space if and only if the Douglas tensor
[6]

D" =Gy — (Gisry" + GO + Gt + Gki(S;‘L)

1
n+1
vanishes identically, where Gihjk = 3kGih j is the hv-curvature tensor of the
Berwald connection BI' [11].

F™ is said to be a Douglas space [4] if
(2.1) DY =G'(z,y)y’ — G (z,y)y'

are homogeneous polynomials in (3°) of degree three. Differentiating (2.1)
with respect to y", y*, y? and y9, we have D;‘fép , = 0, which are equivalent
of D};"gpm = (n+ 1)Dp%p = 0. Thus if a Finsler space F" satisfies the
condition D;ﬂ:p . = 0, which are equivalent to Dy} = (n+1)Dy'y, = 0, we
call it a Douglas space. Further differentiating (2.1) by ™ and contacting
m and j in the obtained equation, we have D™, = (n + 1)G* — G™,y".

Thus F™ is said to be a Douglas space of the second kind if and only if
(2.2) D™, =(n+1)G" — Gy

are homogeneous polynomials in (y*) of degree two. Furthermore differenti-
ating (2.2) with respect to y", y’/ and y*, we get D}Z}Lkm = (n+1)Di ;1 = 0.

Therefore we have
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DEFINITION 2.1. If a Finsler space F™ satisfies the condition that D*™,,, =
(n+1)G* — G™,,y* be homogeneous polynomials in (y°) of degree two, we

call it a Douglas space of the second kind.

On the other hand, a Finsler space of an (o, 3)-metric is said to be a

Douglas space of the second kind if and only if
B™,, = (n+1)B"— B™,,y"

are homogeneous polynomials in (y*) of degree two, where B™,, is given
by [8]. Furthermore differentiating the above with respect to y", y7 and
yk. we get Bszm = B,iljk = 0. Therefore if a Finsler space F™ with an
(a, B)-metric satisfies the condition B}g‘km = Bfljk =0, we call it a Douglas
space of the second kind.

Since L = L(a, 3) is a positively homogeneous function of a and g of

degree one, we have
Loa+LgB=1L, Lyaa+ LagB=0,
Lgaa+ LggB =0, Loaa®~+ LaagBB = —Laa,
Lo =0L/0a, Lg=0L/0B, Laa=0%L/0adq,
Log = Lgo = 0?°L/0adB, Laaa = 0°L/0adada.

(2.3)

Here we state the following lemma and remark for the later frequent use:

LEMMA 2.2 [3]. If o® = 0 (mod ), that is, a;j(x)y'y? contains b;(z)y’
as a factor, then the dimension is equal to two and b? vanishes. In this case

we have § = d;(x)y’ satisfying o = 3§ and d;b* = 2.

REMARK 2.3. Throughout the present paper, we say “homogeneous poly-
nomial(s) in (y°) of degree r”as hp(r) for brevity. Thus oo is hp(2) and,
if the Finsler space with an («, #)-metric is a Douglas space of the second
kind, then B, is hp(2).

3. Douglas space of the second kind with («a, 3)-metric
In the present section, we deal with the condition that a Finsler space

with an («, §)-metric be a Douglas space of the second kind.
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Let us consider the function G*(z,y) of F™ with an (a, 3)-metric. Ac-
cording to ([10], [11]), they are written in the form

(3.1) 2G" ='0 + 2B,
' B'=(B/a)y' + (aLg/La)s'o — (aLaa/La)C*{(y'/a) — (a/B)b'},

where we put
E = (BLs/L)C",
C* = {aB(rooLa — 2as0Ls)}/{2(6%La + av*Laa)}s
V2 = b2a? — 2.
Since Yo'o = vk (x)y'y? is hp(2), by means of (2.1) and (3.1) we have as

follows [12]: A Finsler space F" with an (a, 3)-metric is a Douglas space if
and only if BY = Biy/ — Biy® are hp(3). (2.1) gives
2

. . a“Lae . r1i -
(s"oy? — s70y") + 3L Cr 'y’ —by").

OéLg

3.2 BY =
(3.2) I.

Then differentiating (3.2) by y™ and contracting m and j in the obtained

equation, we have

B™,,
= O (aLLﬁ> (s'oy™ — s™oy") + O[LLﬁ Om (s'0y™ — 5™ 0y")

(3:3) Om (0‘;%;“) O™ (biy™ — b™y') + O‘;ﬁza (OmC*)(b'y™ — b™y")
+ a;iza C O (b'y™ = b™y").

Making use of (2.2) and the homogeneity of (y%), we obtain

. alg , , alLg , o?LLaoso
3.4 O i ,m m i i z’
(3.4) <La>(80y 80y)_<La>SO_(ﬁLa)2y

OéLﬁ
L,

nalg
La

(3.5) O (sT0y™ — s™0y') = s'o,



214 Il1-Yong Lee

: 2Laa\ . ,

BLa
(3.6)
_ 7{oLaLaaa + (2La — aLaa)Laa}C* ;
(BLa)? ’
(3.7) (D C*)y™ = 2C*,

(OnCW" = 50z {7 + 26%)M +20° 5 Lo
(38) — Oéﬁ’YZLaarOO — 20((,8311,3 =+ 052'}/2110404)30}

- QQBM{QbZ/BQLa - 74Laaa - b2a72Laa}]7

o?Loe o n o : (n—1)a?LooC*
3.9 C*am bl m _ bT"/ 7 — b'l,
(3.9) L. (0'y y') oL
where
M = (rooLa — 2as9Lg),
(3.10) Q = (8°La + ay*Las), provided that Q # 0,

r T ij
Yi =airy", s00=0, b's.=0, as;; =0.

Substituting (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) into (3.3), we have

gim _ (ntDals ;  of(n+1)a’Qaab’ + 672 Ay'}
(311) m L. 0 502 00
' a?{(n+ 1)a?QLgLaab' + By'} o3 Loy’
- 7 .Q2 S0 — 0 To,
where

A= aLyLaaa +3LaLaa — 30(Laa)?,
(3.12) B = aBy’LaLgLaoa + B{(37* — 8*)La — 407*Loa } L Laa
+ QLL -
Summarizing up the above, we establish
THEOREM 3.1. The necessary and sufficient condition for a Finsler
space F™ with an («, )-metric to be a Douglas space of the second kind

is that B'™,, are homogeneous polynomials in (y™) of degree two, where
Bi™,. is given by (3.11) and (3.12), provided that € # 0.
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4. Matsumoto space
In the present paper, we consider the condition that Matsumoto space
F™ be a Douglas space of the second kind. The notion of this space was
originally introduced by M. Matsumoto [9]. The metric of F™ is L = o?/(a—
(). Then we get
Lo =ala=20)/(a=B)?,  Lg=a’/(a-p5),
(4.1) Loa =26%/(a = 0)°, Laaa = —66%/(a— B)%,
Q = af?{(1 +20*)a® — 3a8}/(a — B)>.
Substituting (4.1) into (3.12), we have
A= —6a’6%/(a~B)°,
B =2a*8*{(1 - b*)a? — (5+ 4b%)aB + 958%}/(a — B)®.
Further substituting (4.1) and (4.2) into (3.11), we get
ala —28){(1 + 2b%)a — 36} B,
— (n+ 1)a®{(1+ 2b*)a — 36}%s'
— (@ —28)[(n + 1)a?{(1 + 2b*)a — 38}b" — 372y ]r00
+ 2a%[(n + 1)a?{(1 + 2b*)a — 33}
+{(1 = 0*)a® — (5 + 4b*)aB + 98 }y']s0
+ 202 (o — 28){(1 + 2b*)a — 38}y're = 0.
Suppose that F™ be a Douglas space of the second kind, that is, B'™,, be

(4.2)

(4.3)

hp(2). Since « is irrational in (y*), (4.3) is divided two equations as follows:
?{(1+20%)%a” 4 3(7 + 8%) %} B™™,,, 4+ 6(n + 1)(1 + 2b%)a’ Bs’y

— [(n+ 1)o?{(1 4 26%)a® + 68°}b" + 687y Jroo
—20%[3(n + 1)a?Bb" — {(1 — b%)a? + 982 }y']s0
+202{(1 + 2b*)a® + 632 }y'ro = 0,
B{4(1 + 26%)(2 + b*)a? + 186%}B™,,
+ (n+ 1)a{(1 + 2b%)%a* + 95°}s'o
(4.5) —{(n+1)(5 +4b*)a”Bb" + 37%y"}roo
— a®{2(n + 1)(1 + 26%)ab’ — 2(5 + 4b) By’ } 50
+ 2(5 + 4b*)a? By'rg = 0.

(4.4)
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Since only the term 633y‘rog of (4.4) seemingly does not contain o2

have hp(4) Vj such that 33y‘rgog = a?V}. First we deal with the general
case a? #Z 0 (mod 3), that is, n > 2. Then there exists a function f(x) such
that

, we must

(4.6) roo = o2 f(x);  rij = ai; f(x).

Transvection by b'y’ leads to

(4.7) ro=pBf(z); r;="b;f(x)

Since the terms 33%(63B™",, + y'ro0) of (4.5) seemingly do not contain o2,
there must exist hp(3) U's such that

(48) 3,82(6ﬁBlmm + yi’l“oo) = CKQUig.

The above shows there exists hp(1) U? = Uy (z)y"* satisfying U’z = F2U°,
and hence (4.8) is redeced to

(4.8) 3(66B"™ m + y'roo) = a*U".

Substituting (4.6) into (4.8"), we have 183B™,,, = o?(U* — 3f(x)y*). Thus
from o # 0 (mod () there exists a function g*(z) such that U — 3 f(x)y’ =
18¢%(z)3, where ¢g* = g*(z), which gives

(4.8 B™, = a’gi(x).
Substituting (4.6) and (4.8") into (4.4), we have
?{(1+20%)a? + 3(7 + 8v%) 5%} g (x) + 6(n + 1)(1 + 2b%)a®Bs’y
— f(@)[(n + Da?{(1 + 2b%)a* + 65°}b" + 66~%y"]
—2[3(n 4 1)a?B8b’ — {(1 — b*)a® + 96 }y']s0
+2f(z)B3{(1 + 2b*)a* + 63 }y" = 0.

(
(
(4.9)

The terms 1832(f(z)8 + so)y’ of (4.9) seemingly do not contain a?. Thus

we can put 183%(f(x)B3 + so)y’ = a?V'isy, where Viy is hp(2). If Viy =
hi(x)(3?, then we have 18(f(z)3 + so)y’® = h'(z)a®. Transvection by b;
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yields 18(f(z)8+ so) = hpa?, where b;h* = hy. Thus we obtain h, = 0, that
is, f(z)B + so = 0, which leads to

(4.10) so = —f(x)B.
Substituting (4.6), (4.7), (4.8"") and (4.10) into (4.5), we have
B{A(1 + 2b%)(2 + b%)a® + 1837} ¢
+ (n 4+ D){(1 + 20%)%a® + 95} s%
(4.11) — f(@){(n +1)(5 +4b*)a?Bb" + 3v%y'}
+ f(x){2(n 4+ 1)(1 + 2b%)a*b’
—2(5+40%)B8y"} 3 + 2f () (5 + 4b*) 3%y’ = 0.
Only the term 3(68¢° + 3(n + 1)sy + f(x)y*)3? of (4.11) seemingly does
not contain o2, and hence we must have hp(1) V* such that 3(63¢° + 3(n +

1)sty + f(x)y))B% = ?Vi. From o? # 0 (mod 3) it follows that V* must

vanish, and hence
(4.12) 3(n+1)s'y = —(68¢" + f(2)y").

Differentiating (4.12) with respect to ¢’ and transvecting the obtained equa-
tion by ajm, we have 3(n+1)sm; = —(6gmb; + f(¥)am;), where a;mg’ = gm.
Hence 3(n + 1)(Smj — Sjm) = —6(gmb; — gjbm ), which imply

1
(4.13) Sij = m(bigj —bjgi).

Transvection by by’ yields (n+ 1)sg = b*W — g3, where we put W = g;y7
and g, = b'g;. From (4.10) we obtain b*W = {g, — (n + 1) f(z)}5; b%g; =
{go — (n+1)f(2)}b;. Tansvection by b’ leads to f(x) = 0. Substituting the

above into (4.6), we have
(414) Too = 0; Tij = 0.

Transvecting (4.13) by b'b/, we have (n + 1)sg = b*W — g,8. Thus from
5o = 0, we obtain b2W = g,03.
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Conversely substituting f(z) = 0, (4.7), (4.10), (4.13) and (4.14) into
(4.3), we have (o — 203)B™,,, = b2a?(b'W — ¢'3). Transvection by Y; leads
to BY,,, = 0, that is, B"™,, is a Douglas space of the second kind.

Next we are concerned with a? = 0 (mod (), that is, Lemma 2.2 shows
that n = 2, o? = 36, § = d;(z)y", b* = 0 and b'd; = 2. (4.4) and (4.5) are
reduced in the forms respectively
(4.15) §(218 + 6)B"™,,, + 1836%s'g — 3{6(68 + §)b" — 2By }roo

4.15 , , ,
— 26{9B5b" — (98 + 8)y' }so + 26(683 + 8)y'ro = 0,
2(98 + 46) B, + 35(98 + 8)s'o — 3(56b" — y")roo

(4.16) . , ,
—25(36b" — 5y*)so + 100y‘re = 0.

Since only the term 68y‘rgp of (4.15) seemingly does not contain d, there
must exist Ap(1) V = V;(z)y* such that

(417) Too = 6V7 QTij = dz‘/] + d]‘/;
Transvection by b'y’ gives
(4.18) 2rg =2V + V48, Vi, = b'V;.

Paying attention to the terms of (4.16) which seeming do not contain §, we
can put
183B"™,, + 3y'roo = 6V's,

where V%5 is hp(2). Substitution by (4.17) leads to
(4.19) B, = U,

where U? is hp(1) and Vs — 3y'V = 183U". Substituting (4.17), (4.18) and
(4.19) into (4.15), we obtain
5(218 + 6)U + 1836s'y — 3{6(68 + 6)b' — 28y*}V

(4.20) , . .
—2{9838b" — (98 + 8)y'}s0 + (68 + 8) (2V + V46) y* = 0.
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Since the terms 183y (V + sg) of (4.20) seemingly do not contain d, there

must exist a function h(x) such that
(4.21) so = h(z)d — V.
Further substituting (4.17), (4.18), (4.19) and (4.21) into (4.16), we have

2(98 +46)U* +3(98 + 6)s'o — 3{550" — y'}V

(4.22) A , A
—2(30b" — 5y*)(h(z)0 — V) + 512V 4+ V40)y* = 0.

Since the dimension is equal to two and (/3, ) are independant pairs, we can
put V = p(z)B+q(z)d and U* = hi(x)B+k'(x)d where p(z), q(x), h'(z) and
k() are scalar functions. Substitution by V = p(z)3+ q(x)d and the terms
38{6U" + 9s'g + p(x)y'} of the obtained equation seemingly do not contain
§. Thus there exists function ¢*(z) satisfying 9s’o + 6U* + p(z)y* = dg*(z).
Paying attention to U’ = h'j3 + k', we obtain

95’y = g'(2)8 — p()y’ — 6h' () f;
(4.23) cT o
9s'; = g"(z)d; — p(z)d; — 6h" (z)b;.

Paying attention to 2a;; = b;d; + bjd; and transvecting (4.23) by aip,, we

have

1 1

where a;;mg’ = gm and aj,h’ = hy,.

Transvecting (4.24) by b'y’, we have

950 = gpd — (p(x) + 6hs) 3,

where we put b'g; = g, and b'h; = hy. Substituting (4.21) into the above,

we obtain
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(4.25) 9V = (9h(x) — 95)5 + (pla) + 6hy) .

Summarizing up the above, we obtain

THEOREM 4.1. A Matsumoto space with the metric L = o?/(a — 3)

is a Douglas space of the second kind, if and only if

a2

(1) o® #£ 0 (mod () : (4.13) and (4.14) are satisfied, where bW = g,(3,
(2) > =0 (mod B) : n = 2 and (4.17) and (4.24) are satisfied, where
= 6, § = d;(2)y", and p(x), hi(x), ¢g'(z) are scalar functions and V is

given by (4.25).
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