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(A, η)-MONOTONE MAPPINGS
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Abstract. In this paper, we consider proximal point algorithms
based on (A, η)-monotone mappings in the framework of Hilbert
spaces. Since (A, η)-monotone mappings generalize A-monotone
mappings, H-monotone mappings and many other mappings, our
results improve and extend the recent ones announced by [R.U.
Verma, Rockafellars celebrated theorem based on A-maximal mono-
tonicity design, Appl. Math. Lett. 21 (2008), 355-360] and [ R.T.
Rockafellar, Monotone operators and the proximal point algorithm,
SIAM J. Control Optim. 14 (1976) 877-898] and some others.

1. Introduction

Variational inclusions problems are among the most interesting and
intensively studied classes of mathematical problems and have wide ap-
plications in the fields of optimization and control, economics and trans-
portation equilibrium and engineering sciences. Variational inclusions
problems have been generalized and extended in different directions us-
ing the novel and innovative techniques. Various kinds of iterative al-
gorithms to solve the variational inequalities and variational inclusions
have been developed by many authors, see [1-16].

Let H be a real Hilbert space with the norm ‖·‖ and the inner product
〈·, ·〉. We consider the classical nonlinear variational inclusion problem:
find a solution to

0 ∈ M(x), (1.1)
where M : H → 2H is a set-valued mapping on H. In 1976, Rockafellar
[10] investigated the general convergence and rate of convergence based
on proximal point algorithms in the context of solving (1.1) by showing,

Received November 06, 2007; Accepted May 20, 2008.
2000 Mathematics Subject Classification: Primary 47H04, 47H05, 49J40.
Key words and phrases: (A, η)-monotone mapping, A-monotone mapping, varia-

tional inclusion.



148 Xiaolong Qin, Meijuan Shang, and Qing Yuan

when M is maximal monotone, that the sequence {xn} generated for an
initial point x0 by

xn+1 ≈ Pn(xn) (1.2)

converges weakly to a solution (1.1), provided the approximation is made
sufficiently accruate as the iteration proceeds, where Pn = (I + cnM)−1

for a sequence {cn} of positive real numbers that is bounded away from
zero. It follows from (1.2) that xn+1 is an approximate solution to the
inclusion problem

0 ∈ M(x) + c−1
n (x− xn). (1.3)

As a matter of fact, a general class of problems of variational char-
acter, including minimization or maximization of functions, variational
inequality problems, and minimax problems, can be unified into the form
(1.1). General maximal monotonicity has been a powerful framework to
studying convex programming and variational inequalities. It turned out
that one of the fundamental algorithms applied for solving these prob-
lems was in fact proximal point algorithm. Furthermore, Rockafellar [11]
applied the proximal point algorithm in convex programming. Verma
[15] improved the results of Rockafellar [10] based on A-maximal mono-
tonicity design. Recently Verma [14] generalized the recently introduced
and studied notion of A-monotonicity to the case of (A, η)-monotonicity,
while examining the sensitivity analysis for a class of nonlinear varia-
tional inclusion problems based on the generalized resolvent operator
technique.

Inspired and motivated by the recent research going on in this area,
in this paper, we explore the approximation solvability of a generalized
nonlinear variational inclusion problem (1.1) based on (A, η)-monotone
mappings in the framework Hilbert spaces. Our results mainly improve
and extend the recent ones announced by Rockafellar [10] and Verma
[15].

2. Preliminaries

In this section we explore some basic properties derived from the no-
tion of (A, η)-monotonicity. Let η : H × H :→ H be a single-valued
mapping. The map η is called τ -Lipschitz continuous if there is a con-
stant τ > 0 such that

‖η(u, v)‖ ≤ τ‖y − v‖, ∀u, v ∈ H.
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Let M : H → 2H be a multivalued mapping from a Hilbert space H
to 2H , the power set of H. We recall following:

(i) The set D(M) defined by

D(M) = {u ∈ H : M(u) 6= ∅},

is called the effective domain of M.

(ii) The set R(M) defined by

R(M) =
⋃

u∈H

M(u),

is called the range of M .

(iii) The set G(M) defined by

G(M) = {(u, v) ∈ H ×H : u ∈ D(M), v ∈ M(u)},

is the graph of M .

Definition 2.1. Let η : H×H → H be a single-valued mapping and
let M : H → 2H be a multivalued mapping on H.

(i) The map M is said to be monotone if

〈u∗ − v∗, u− v〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(ii) η-monotone if

〈u∗ − v∗, η(u, v)〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(iii) r-strongly monotone if

〈u∗ − v∗, u− v〉 ≥ r‖u− v‖, ∀(u, u∗), (v, v∗) ∈ G(M).

(iv) (r, η)-strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ r‖u− v‖, ∀(u, u∗), (v, v∗) ∈ G(M).

(v) η-pseudomonotone if 〈v∗, η(u, v)〉 ≥ 0 implies

〈u∗, η(u, v)〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(vi) (m, η)-relaxed monotone if there exists a positive constant m
such that

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, ∀(u, u∗), (v, v∗) ∈ G(M).



150 Xiaolong Qin, Meijuan Shang, and Qing Yuan

Definition 2.2 ([12]). Let A : H → H be a nonlinear mapping on a
Hilbert space H and let M : H → 2H be a multivalued mapping on H.
The map M is said to be A-monotone if
(i) M is m-relaxed monotone.
(ii) A + ρM is maximal monotone for ρ > 0.

Remark 2.3. A-monotonicity generalizes the notion of H-monotonicity
introduced in [3].

Definition 2.4 ([13],[14]). A mapping M : H → 2H is said to be
maximal (m, η)-relaxed monotone if
(i) M is (m, η)-relaxed monotone,
(ii) for (u, u∗) ∈ H ×H and

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, (v, v∗) ∈ G(M),

we have u∗ ∈ M(u).

Definition 2.5 ([13],[14]). Let A : H → H and η : H × H → H
be two single-valued mappings. The map M : H → 2H is said to be
(A, η)-monotone if
(i) M is (m, η)-relaxed monotone,
(ii) R(A + ρM) = H for ρ > 0.
Note that alternatively, the map M : H → 2H is said to be (A, η)-
monotone if
(i) M is (m, η)-relaxed monotone,
(ii) A + ρM is η-pseudomonotone for ρ > 0.

Remark 2.6. (A, η)-monotonicity generalizes the notion of A - mono-
tonicity introduced by Verma [12] and (H, η)-monotonicity introduced
by Fang et al. [4].

Definition 2.7. Let A : H → H be an (r, η)-strong monotone map-
ping and let M : H → H be an (A, η)-monotone mapping. Then the
generalized resolvent operator JA,η

M,ρ : H → H is defined by

JA,η
M,ρ(u) = (A + ρM)−1(u), ∀u ∈ H,

where ρ > 0 is a constant.

Notation ([12]). Let A : H → H be an r-strongly monotone map-
ping and let M : H → 2H be an A-monotone mapping. Then the
operator (A + ρM)−1 is single-valued.

Notation ([13], [14]). Let η : H× → H be a single-valued mapping,
A : H → H be (r, η)-strongly monotone mapping and M : H → 2H
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be an (A, η)-monotone mapping. Then the mapping (A + ρM)−1 is
single-valued.

In order to prove our main results, we also need the following lemmas.

Lemma 2.8 ([16]). Let H be a real Hilbert space and let η : H×H →
H be a τ -Lipschitz continuous nonlinear mapping. Let A : H → H be
a (r, η)-strongly monotone and let M : H → 2H be (A, η)-monotone.

Then the generalized resolvent operator JA,η
M,ρ : H → H is τ/(r − ρm),

that is,

‖JA,η
M,ρ(x)− JA,η

M,ρ(y)‖ ≤ τ

r − ρm
‖x− y‖, ∀x, y ∈ H.

Lemma 2.9 ([16]). Let H be a real Hilbert space, let A : H → H be
(r, η)-strongly monotone, and let M : H → 2H be (A, η)-monotone. Let
η : H ×H → H be a τ -Lipschitz continuous nonlinear mapping. Then
the following statements are mutually equivalent:
(i) An element u ∈ H is a solution (1).

(ii) For u ∈ H, we have u = JM,η
ρ,A (A(u)), where

JM,η
ρ,A (u) = (A + ρM)−1(u).

Lemma 2.10. Let H be a real Hilbert space, let A : H → H be (r, η)-
strongly monotone and s-Lipschitz continuous and let M : H → 2H

be (A, η)-monotone. Furthermore, let η : H × H → H be τ -Lipschitz
continuous. Then

‖JA,η
M,ρ(A(u))− JA,η

M,ρ(A(v))‖ ≤ sτ

r − ρm
‖u− v‖2.

Consequently, we have

〈(I − JA,η
M,ρA)(u)− (I − JA,η

M,ρA)(v), u− v〉

≥ (1 +
sτ

r − ρm
)−2(1− sτ

r − ρm
)‖(I − JA,η

M,ρA)(u)− (I − JA,η
M,ρA)(v)‖.

Proof. Since JA,η
M,ρ : H → H is τ/(r − ρm) and A is s-Lipschitz con-

tinuous, we can obtain the desired conclusion easily.

3. Main results

Theorem 3.1. Let H be a real Hilbert space, let A : H×H be (r, η)-
strongly monotone and s-Lipschitz continuous and let M : H → 2H be
(A, η)-monotone. Let η : H × H → H be a τ -Lipschitz continuous
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nonlinear mapping. For an arbitrarily chosen initial point x0, suppose
that the sequence {xn} is generated by the proximal point algorithm

xn+1 ≈ JA,η
M,ρn

(A(xn))

such that

‖xn+1 − JA,η
M,ρn

(A(xn))‖ ≤ εn,

where JA,η
M,ρn

= (A + ρnM)−1, εn ⊂ [0,∞), ρn ⊂ [0,∞) are scalar se-

quences with e1 =
∑∞

n=0 εn < ∞ and ρn is bounded away from zero.
Then the following conclusions hold:

(i) The sequence {xn} is bounded.

(ii) limn→∞ J∗n(xn) = 0, for ρn < r−sτ
m and sτ < r.

(iii) The sequence {xn} converges weakly to a solution of (1.1).

Proof. Suppose that x∗ is a zero of M. Put J∗n = I − JA,η
M,ρn

(A) for all
n ≥ 0. From Lemma 2.3, we have J∗n is (1+ sτ

r−ρnm)2(1− sτ
r−ρnm)−1-firmly

nonexpansive.
On the other hand, we have any solution to (1.1) is a fixed point of

JA,η
M,ρn

A, and hence a zero of J∗n. Observe that

‖xn+1 − x∗‖ = ‖xn+1 − JA,η
M,ρn

(A(xn)) + JA,η
M,ρn

(A(xn))− x∗‖

≤ εn + ‖JA,η
M,ρn

(A(xn))− x∗‖

≤ εn +
sτ

r − ρnm
‖xn − x∗‖

≤ e1 + ‖x0 − x∗‖,

which yields that sequence {xn} is bounded. It follows from Lemma 2.3
that

‖xn+1 − x∗‖2

= ‖xn+1 − JA,η
M,ρn

(A(xn))− J∗n(xn) + xn − x∗‖2

= ‖xn+1 − JA,η
M,ρn

(A(xn))− J∗n(xn)‖2 + ‖xn − x∗‖2

+ 2〈xn+1 − JA,η
M,ρn

(A(xn)), xn − x∗〉 − 2〈J∗n(xn)− J∗n(x∗), xn − x∗〉
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= ‖xn+1 − JA,η
M,ρn

(A(xn))− J∗n(xn)‖2 + ‖xn − x∗‖2

+ 2〈xn+1 − JA,η
M,ρn

(A(xn)), xn − x∗〉

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)‖J∗n(xn)‖2

= ‖xn+1 − JA,η
M,ρn

(A(xn))‖2 + ‖J∗n(xn)‖2

− 2〈xn+1 − JA,η
M,ρn

(A(xn)), J∗n(xn)〉+ ‖xn − x∗‖2

+ 2〈xn+1 − JA,η
M,ρn

(A(xn)), xn − x∗〉

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)‖J∗n(xn)‖2

≤ ε2n + ‖J∗n(xn)‖2 − 2〈xn+1 − JA,η
M,ρn

(A(xn)), J∗n(xn)〉+ ‖xn − x∗‖2

+ 2〈xn+1 − JA,η
M,ρn

(A(xn)), xn − x∗〉

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)‖J∗n(xn)‖2

≤ ε2n + [1 + (1 +
sτ

r − ρnm
)4(1− sτ

r − ρnm
)−2]‖xn − x∗‖2

+ 2〈xn+1 − JA,η
M,ρn

(A(xn)), JA,η
M,ρn

(A(xn))− x∗〉

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)‖J∗n(xn)‖2

≤ ε2n + [1 + (1 +
sτ

r − ρnm
)4(1− sτ

r − ρnm
)−2]‖xn − x∗‖2

+ 2εn
sτ

r − ρnm
‖xn − x∗‖

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)‖J∗n(xn)‖2,

where ρn < r−sτ
m and sτ < r. It follows from the summability of the

sequence {εn} that e2 =
∑∞

n=0 ε2n < ∞. Therefore, we have

‖xn+1 − x∗‖2

≤ e2 + [1 + (1 +
sτ

r − ρnm
)4(1− sτ

r − ρnm
)−2]‖x0 − x∗‖2

+ 2e1
sτ

r − ρnm
‖x0 − x∗‖

− 2(1 +
sτ

r − ρnm
)−2(1− sτ

r − ρnm
)

n∑
i=0

‖J∗i (xi)‖2.
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We infer that
∑n

i=0 ‖J∗i (xi)‖2 < ∞ ⇒ limn→∞ J∗n(xn) = 0. It fol-
lows that there exists a unique element (µn, νn) ∈ M represented by
A(µn) + ρnνn = A(xn) for all n. Observing µn = JA,η

M,ρn
(A(xn)) and

limn→∞ J∗n(xn) = 0, we have

lim
n→∞

‖xn − µn‖ = 0. (3.1)

It further follows, since the ρn is bounded away from zero, that

lim
n→∞

J∗n(xn)
ρn

= lim
n→∞

νn = 0.

Since the sequence {xn} is bounded and the space is a Hilbert space, we
have that there exists a subsequence {xni} of {xn} such that {xni} ⇀ x∗.
From (3.1), we have µni also converges weakly to x∗. Let some (µ, ν) ∈
M . It follows from (A, η)-monotonicity of M that

〈µ− µn, η(ν, νn)〉 ≥ (−m)‖µ− µn‖2 for all n ≥ 0,

which yields that

〈µ− x∗, η(ν, 0)〉 ≥ (−m)‖µ− x∗‖2 for all n ≥ 0.

Since M is (m, η)-relaxed monotone and (µ, ν) is arbitrary, we have
(x∗, 0) ∈ M . This implies that x∗ is a solution of nonlinear variational
inclusion (1.1).

Finally, since very Hilbert space is a Opial′s space, we have that the
whole sequence convergence weakly to x∗. This complete the proof.

Remark 3.2. Theorem 3.1 mainly improves Theorem 1 of Rockafellar
[10] and also generalizes Theorem 3.2 of Verma [15] to the case of (A, η)-
monotone mappings.
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