C-DUNFORD INTEGRAL AND C-PETTIS INTEGRAL

Dafang Zhao* and Xuexiao You**

ABSTRACT. In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We prove that a function f is C-Dunford integrable if and only if x^*f is C-integrable for each $x^* \in X^*$ and prove the controlled convergence theorem for the C-Pettis integral.

1. Introduction

In 1996 B. Bongiorno provided a new solution to the problem of recovering a function from its derivative by integration by introducing a constructive minimal integration process of Riemann type, called C-integral, which includes the Lebesgue integral and also integrates the derivatives of differentiable function. B.Bongiorno and L.Di Piazza [1, 2, 4] discussed some properties of the C-integral of real-valued functions. In [9, 10, 11], we studied the Banach-valued C-integral.

The Dunford integral and the Pettis integral are generalizations of Lebegue integral to the Banach-valued functions. In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We prove that a function f is C-Dunford integrable if and only if x^*f is C-integrable for each $x^* \in X^*$, we also discuss the relationship between the C-Pettis integral and Pettis integral, if a function f is C-integrable on [a,b] then f is C-Pettis integrable on [a,b], but an example shows that the converse is not true. Finally, we prove the controlled convergence theorem for the C-Pettis integral.

Received November 13, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28B05, 26A39; Secondary 46G10

Key words and phrases: C-integral, C-Dunford integral, C-Pettis integral.

^{*}Supported by Science Foundation of Hubei Normal University 2007D41.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^* . A partition D is a finite collection of interval-point pairs $\{([u_i, v_i], \xi_i)\}_{i=1}^n$, where $\{[u_i, v_i]\}_{i=1}^n$ are non-overlapping subintervals of [a, b]. $\delta(\xi)$ is a positive function on [a, b], i.e. $\delta(\xi) : [a, b] \to \mathbb{R}^+$. We say that $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ is

- (1) a partial partition of [a,b] if $\bigcup_{i=1}^{n} [u_i,v_i] \subset [a,b]$,
- (2) a partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b]$,
- (3) δ fine McShane partition of [a,b] if $[u_i,v_i] \subset B(\xi_i,\delta(\xi_i)) =$ $(\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in [a, b]$ for all $i=1,2,\cdots,n$,
- (4) δ fine C-partition of [a,b] if it is a δ fine McShane partition of [a, b] and satisfying the condition

$$\sum_{i=1}^{n} dist(\xi_i, [u_i, v_i]) < \frac{1}{\varepsilon},$$

here $dist(\xi_i, [u_i, v_i]) = inf\{|t_i - \xi_i| : t_i \in [u_i, v_i]\},\$

(5) δ - fine Henstock partition of I_0 if $\xi_i \in I_i \subset B(\xi_i, \delta(\xi_i))$ for all $i=1,2,\cdots,n$.

Given a δ - fine *C-partition* $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ we write

$$S(f, D) = \sum_{i=1}^{n} f(\xi_i)(v_i - u_i)$$

for integral sums over D, whenever $f:[a,b] \to X$.

Definition 2.1. A function $f:[a,b]\to X$ is C-integrable (Henstock integrable) if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi): [a,b] \to \mathbb{R}^+$ such that

$$||S(f,D) - A|| < \epsilon$$

for each δ - fine C-partition (Henstock partition) $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. A is called the C-integral (Henstock integral) of f on [a, b], and we write $A = \int_a^b f$ or $A = (C) \int_a^b f$ $(A = (H) \int_a^b f)$. The function f is C-integrable on the set $E \subset [a,b]$ if the function

 $f\chi_E$ is C-integrable on [a,b]. We write $\int_E f = \int_a^b f\chi_E$.

The basic properties of the C-integral, for example, linearity and additivity with respect to intervals can be founded in [10]. We do not present them here. The reader is referred to [10] for the details.

DEFINITION 2.2. A function $f:[a,b]\to X$ is C-Dunford integrable (Henstock-Dunford integrable) on [a,b] if x^*f is C-integrable (Henstock integrable) on [a,b] for each $x^*\in X^*$ and if for every subinterval $[c,d]\subset [a,b]$ there exists an element $x^{**}_{[c,d]}\in X^{**}$ such that $\int_c^d x^*f=x^{**}_{[c,d]}(x^*)$ for each $x^*\in X^*$. We write

$$(CD)\int_{c}^{d} f = x_{[c,d]}^{**} \in x^{**}$$

$$((HD)\int_{c}^{d} f = x_{[c,d]}^{**} \in x_{.}^{**})$$

DEFINITION 2.3. A function $f:[a,b]\to X$ is C-Pettis integrable (Henstock-Pettis integrable) on [a,b] if f is C-Dunford integrable (Henstock-Dunford integrable) on [a,b] and $(CD)\int_c^d f\in X$ $((HD)\int_c^d f\in X)$ for every interval $[c,d]\subset [a,b]$. We write

$$(CP) \int_{c}^{d} f = (CD) \int_{c}^{d} f \in X$$
$$((HP) \int_{c}^{d} f = (HD) \int_{c}^{d} f \in X_{.})$$

The function f is C-Pettis integrable on the set $E \subset [a,b]$ if the function $f\chi_E$ is C-Pettis integrable on [a,b]. We write $(CP)\int_E f = (CP)\int_a^b f\chi_E$.

THEOREM 2.4. $f:[a,b] \to X$ is C-Dunford integrable on [a,b] if and only if x^*f is C-integrable on [a,b] for each $x^* \in X^*$.

Proof. If f is C-Dunford integrable on [a,b] for each $x^* \in X^*$, then x^*f is C-integrable on [a,b] .

Now we prove the "only if" part.

From [10,Theorem 3.3], x^*f is C-integrable on [a,b] for each $x^* \in X^*$, then x^*f is Henstock integrable on [a,b] and $(H) \int_a^b x^*f = (C) \int_a^b x^*f$. Consequently, we have that f is Henstock-Dunford integrable on [a,b] and for every subinterval $[c,d] \subset [a,b]$ there exists an element $x^{**}_{[c,d]} \in X^{**}$ such that $(H) \int_c^d x^*f = x^{**}_{[c,d]}(x^*)$ for each $x^* \in X^*$ from [6,Theorem 8.2.26].

Since x^*f is C-integrable on [c, d] and

$$(H) \int_{c}^{d} x^{*} f = (C) \int_{c}^{d} x^{*} f = x_{[c,d]}^{**}(x^{*})$$

for each $x^* \in X^*$. Hence f is C-Dunford integrable on [a, b].

Similar to the case for the Henstock-Dunford and Henstock-Pettis integrable functions, we can get the following two Theorems.

THEOREM 2.5. If the function $f : [a, b] \to X$ is C-Dunford integrable on [a, b], then each perfect set in [a, b] contains a portion on which f is Dunford integrable.

THEOREM 2.6. Suppose that X contains no copy of c_0 . If the function $f:[a,b] \to X$ is C-Pettis integrable on [a,b], then each perfect set in [a,b] contains a portion on which f is Pettis integrable.

From the definitions of Pettis integral and C-Pettis integral, we can easily get the following theorem.

THEOREM 2.7. If a function $f:[a,b] \to X$ is Pettis integrable on [a,b] then f is C-Pettis integrable on [a,b].

THEOREM 2.8. If a function $f:[a,b] \to X$ is C-integrable on [a,b] then f is C-Pettis integrable on [a,b].

Proof. f is C-integrable on [a,b], then x^*f is C-integrable on [a,b] for each $x^* \in X^*$ and $(C) \int_a^b x^*f = x^*((C) \int_a^b f)$ from [10,Theorem 2.7].

For each subinterval $[c,d] \subset [a,b]$, we have $(C) \int_c^d f \in X$. Then f is C-Pettis integrable on [a,b] and

$$(CP)\int_{a}^{b} f = (C)\int_{a}^{b} f.$$

REMARK 2.9. The following example show that the converse of Theorem 2.5 is not true. In other words, there exists a function which is C-Pettis integrable but is not C-integrable.

Example 2.10. (a) Define a function $f:[0,1] \longrightarrow l_{\infty}(\omega_1)$ by

(2.1)
$$f(t)(\alpha) = \begin{cases} 1 & \text{if } t \in N_{\alpha} \backslash C_{\alpha}, \\ 0 & \text{if Otherwise.} \end{cases}$$

where ω_1 is the first uncountable ordinal. $\{N_{\alpha}\}_{{\alpha}\in\omega_1}$ and $\{C_{\alpha}\}_{{\alpha}\in\omega_1}$ be two collection of subsets of [0,1] satisfying the following properties:

- (1) for each $\alpha \in \omega_1$, N_{α} is a set of zero Lebesgue measure,
- (2) $N_{\alpha} \subset N_{\beta}$, if $\alpha < \beta$,
- (3) every subset of [0,1] of zero Lebesgue measure is contained in some set N_{α} ,
 - (4) for each $\alpha \in \omega_1$, C_{α} is a countable set,

- (5) $C_{\alpha} \subset C_{\beta}$, if $\alpha < \beta$,
- (6) every countable subset of [0, 1] is contained in some set C_{α} .

In [5,Example(CH)], L. Di Piazza and D.Preiss proved that f is Pettis integrable but is not McShane integrable on [0,1]. It is easy to know that f is C-Pettis integrable on [0,1] from Theorem 2.4. In [10,Theorem 3.4], we proved that f is McShane integrable if and only if f is C-integrable and Pettis integrable. Suppose that f is C-integrable on [0,1], then f is McShane integrable on [0,1]. This is a contradiction, so f is not C-integrable on [0,1].

3. Convergence theorem for the C-Pettis integral

DEFINITION 3.1. Let $F_n, F : [a, b] \to R$ and let E be a subset of [a, b].

- (a) F is said to be AC_c on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : E \to R^+$ such that $\sum_i |F([u_i, v_i])| < \epsilon$ for each δ fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b] satisfying $\xi_i \in E$ for each i and $\sum_i (v_i u_i) < \eta$.
- (b) F_n is said to be UAC_c on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : E \to R^+$ such that $\sum_i |F_n([u_i, v_i])| < \epsilon$ for all n and for each δ fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b] satisfying $\xi_i \in E$ for each i and $\sum_i (v_i u_i) < \eta$.
- (c) F is said to be ACG_c on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is AC_c .
- (d) F is said to be $UACG_c$ on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is UAC_c .

THEOREM 3.2. Let $f:[a,b] \to X$ and assume that $\{f_n\}$ be a sequence of C-integrable functions. Assume that the following conditions are satisfied:

- (1) $f_n \to f$ almost everywhere on [a, b].
- (2) F_n are $UACG_c$ on [a,b].

Then f is C-integrable on [a,b] and

$$\lim_{n \to \infty} (C) \int_a^b f_n = (C) \int_a^b f.$$

Proof. The proof is standard and similar to [7, Theorem 5.5.2]. \square

THEOREM 3.3. (Controlled Convergence Theorem) Let $f : [a,b] \to X$ and assume that $\{f_n\}$ be a sequence of C-Pettis integrable functions. Assume that the following conditions are satisfied:

(1) for each $x^* \in X^*$, $x^* f_n \to x^* f$ almost everywhere on [a, b].

(2) the family $\{x^*F_n : x^* \in X^*, n \in \mathbb{N}\}$ is $UACG_c$ on [a, b]. Then f is C-Pettis integrable on [a, b] and

$$\lim_{n\to\infty} (CP) \int_a^b f_n = (CP) \int_a^b f \quad (weakly).$$

Proof. We will prove the Theorem in two steps.

Step 1. The sequence $\{f_n\}$ is C-Pettis integrable on [a,b], then for each $x^* \in X^*$, x^*f_n is C-integrable on [a,b]. From Theorem 3.1 we have that x^*f is C-integrable on [a,b] and

$$\lim_{n\to\infty} (C) \int_a^b x^* f_n = (C) \int_a^b x^* f.$$

Step 2. Assume [c,d] is an arbitrary subinterval of [a,b]. Let \mathcal{C} denote the weak closure of $\{(CP)\int_c^d f_n : n \in \mathbb{N}\}$. It is easy to see that \mathcal{C} is bounded and that $\mathcal{C}\setminus\{(CP)\int_c^d f_n : n \in \mathbb{N}\}$ contains at most one point. We claim that \mathcal{C} is weakly compact.

Suppose \mathcal{C} is not weakly compact, then there exists a bounded sequence $(x_k^*) \subset X^*$, a sequence $(x_n) \subset \mathcal{C}$ and $\epsilon > 0$ such that

(3.1)
$$\begin{cases} x_k^*(x_n) = 0 & \text{if } k > n, \\ x_k^*(x_n) > \epsilon & \text{if } k \le n. \end{cases}$$

We can take subsequence $(g_n) \subset (f_n)$ and a sequence $(y_k^*) \subset x_k^*$ such that

(3.2)
$$\begin{cases} (C) \int_{c}^{d} y_{k}^{*} g_{n} = 0 & \text{if } k > n, \\ (C) \int_{c}^{d} y_{k}^{*} g_{n} > \epsilon & \text{if } k \leq n, \\ \lim_{n \to \infty} (C) \int_{c}^{d} x^{*} g_{n} = (C) \int_{c}^{d} x^{*} f, & \text{for each } x^{*} \in X^{*}. \end{cases}$$

From [3,Lemma 1], we can find a subsequence $(y_{k_j}^*) \subset (y_k^*)$ such that $\lim_{j\to\infty} y_{k_j}^* f$ exists almost everywhere. Assume y_0^* is a $weak^*$ cluster point of $(y_{k_j}^*) \subset (y_k^*)$, then we have

$$\lim_{j \to \infty} y_{k_j}^* f = y_0^* f$$

almost everywhere on [a, b]. It is not difficult to get that

$$\lim_{j\to\infty}(C)\int_c^d y_{k_j}^*f=(C)\int_c^d y_0^*f.$$

To force a contradiction, note that for each j, we have that

$$\lim_{n \to \infty} (C) \int_{c}^{d} y_{k_{j}}^{*} g_{n} = (C) \int_{c}^{d} y_{k_{j}}^{*} f.$$

When $n \geq k_j$, from (3) we have that $(C) \int_c^d y_{k_j}^* g_n > \epsilon$ and $(C) \int_c^d y_{k_j}^* f \geq \epsilon$. Therefore

$$\lim_{j\to\infty}(C)\int_c^d y_{k_j}^*f=(C)\int_c^d y_0^*f\geq\epsilon.$$

On the other hand, g_n is C-Pettis integrable for each n, the functional $x^* \longrightarrow (C) \int_c^d x^* g_n$ is $weak^*-$ continuous. Then if (y^*_{α}) is a subset of $(y^*_{k_j}) weak^*$ converging to y^*_0 , by (3) and passing to the limit with $n \to \infty$ we have that

$$\lim_{n \to \infty} \lim_{\alpha} (C) \int_{c}^{d} y_{\alpha}^{*} g_{n} = \lim_{n \to \infty} \lim_{\alpha} y_{\alpha}^{*} (CP) \int_{c}^{d} g_{n}$$

$$= \lim_{n \to \infty} y_{0}^{*} (CP) \int_{c}^{d} g_{n}$$

$$= \lim_{n \to \infty} (C) \int_{c}^{d} y_{0}^{*} g_{n}$$

$$= (C) \int_{c}^{d} y_{0}^{*} f = 0$$

which contradicts the inequality $(C) \int_c^d y_0^* f \ge \epsilon$. Therefore the set C is weakly compact.

Since $\lim_{n\to\infty} (C) \int_c^d x^* f_n = (C) \int_c^d x^* f$, the sequence $\{(CP) \int_c^d f_n\}$ is weak Cauchy. It follows from the weak compactness of \mathcal{C} that

$$\lim_{n\to\infty} (CP) \int_{c}^{d} f_n$$

exists weakly in X. Moreover by [c,d] is an arbitrary subinterval of [a,b], then f is C-Pettis integrable on [a,b] and

$$\lim_{n \to \infty} (CP) \int_a^b f_n = (CP) \int_a^b f \quad (weakly).$$

Acknowledgement. The authors are grateful to the referee for his or her careful reading of the manuscript and for valuable and helpful suggestions.

References

 B. Bongiorno, On the Minimal Solution of the Problem of Primitives, J. Math. Anal. Appl. 251 (2000), no.2, 479-487.

- [2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), no. 1, 117-126.
- [3] R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- [4] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV, (2002), 143-153.
- [5] L. Di Piazza, D. Preiss, When do McShane and Pettis integrals coincide?, Illinois J. of Math. 47 (2003), 1177-1187.
- [6] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, 2005.
- [7] Lee Peng Yee and Rudolf Vyborny *The integral, An Easy Approach after Kurzweil and Henstock*, Australian Mathematical Society Lecture Series 14, Cambridge University Press 2000.
- [8] Dafang Zhao, Guoju Ye, On AP-Henstock-Stieltjes integral, J. Chungcheong Math. Soc. 19 (2006), no. 2, 177-188.
- [9] Dafang Zhao, Guoju Ye, On strong C-integral of Banach-valued functions, J. Chungcheong Math. Soc. **20** (2007), no. 1, 1-10.
- [10] Dafang Zhao, Guoju Ye, C-integral and Denjoy-C integral, Comm. Korean. Math. Soc. 22 (2007), no. 1, 27-39.
- [11] Dafang Zhao, Guoju Ye, On C-integral of Banach-valued functions, Kangweon-Kyungki J. Math. 14 (2006), no. 2, 169-183.
- [12] Ye Guoju, An Tianqing, On Henstock-Dunford and Henstock-Pettis Integrals, International J. of Math. and Math. Sci. 25 (2001), 467-478.

*

Department of Mathematics Hubei Normal University Huangshi, 435002, People's Republic of China E-mail: dafangzhao@hhu.edu.cn

**

Department of Mathematics Hubei Normal University Huangshi, 435002, People's Republic of China E-mail: yxuexiao80@163.com