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C-DUNFORD INTEGRAL AND C-PETTIS INTEGRAL

DAFANG ZHAO* AND XUEXIAO YOU**

ABSTRACT. In this paper, we give the Riemann-type extensions of
Dunford integral and Pettis integral, C-Dunford integral and C-
Pettis integral. We prove that a function f is C-Dunford integrable
if and only if ™ f is C-integrable for each * € X™ and prove the
controlled convergence theorem for the C-Pettis integral.

1. Introduction

In 1996 B. Bongiorno provided a new solution to the problem of recov-
ering a function from its derivative by integration by introducing a con-
structive minimal integration process of Riemann type, called C-integral,
which includes the Lebesgue integral and also integrates the derivatives
of differentiable function. B.Bongiorno and L.Di Piazza [1, 2, 4] discussed
some properties of the C-integral of real-valued functions. In [9, 10, 11],
we studied the Banach-valued C-integral.

The Dunford integral and the Pettis integral are generalizations of
Lebegue integral to the Banach-valued functions. In this paper, we give
the Riemann-type extensions of Dunford integral and Pettis integral,
C-Dunford integral and C-Pettis integral. We prove that a function
f is C-Dunford integrable if and only if *f is C-integrable for each
x* € X*, we also discuss the relationship between the C-Pettis integral
and Pettis integral, if a function f is C-integrable on [a,b] then f is
C-Pettis integrable on [a, b], but an example shows that the converse is
not true. Finally, we prove the controlled convergence theorem for the
C-Pettis integral.
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2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote
a real Banach space with norm ||-|| and its dual X*. A partition D is a fi-
nite collection of interval-point pairs {([u;, vi], &)}y, where {[u;, v;]}14
are non-overlapping subintervals of [a,b]. §(&) is a positive function on
[a,b], i.e. 6(§) : [a,b] =RT. We say that D = {([u;,vi], &)}y is

(1) a partial partition of [a,b] if | J"; [ui, vi] C [a,b],

(2) a partition of [a,b] if |J", [ui, vi] = [a, b],

(3) 0 - fine McShane partition of [a,b] if [u;,v;] C B(&,0(&%)) =
(52 - 6(&)7 &+ 6(£%)) and §; € [av b] for all i=1,2,- - n,

(4) ¢ - fine C-partition of [a,b] if it is a 0 - fine McShane partition of
[a,b] and satisfying the condition

Z diSt(fi, [ui, ’U,,]) < é,
i=1
here CliSt(éi, [ui,vi]) = an{’tl — €z| 1t € [ui,vi]},
(5) & - fine Henstock partition of Iy if & € I; C B(&;,0(&)) for all
i=1,2,- 1.
Given a ¢ - fine C-partition D = {([u;, vi], &)}, we write

S(f,D) = F(&) (v — )
=1

for integral sums over D, whenever f : [a,b] — X.

DEFINITION 2.1. A function f : [a,b] — X is C-integrable (Henstock
integrable) if there exists a vector A € X such that for each £ > 0 there
is a positive function 6(€) : [a,b] — R such that

IS(f, D) = Al < e

for each 6 - fine C-partition (Henstock partition) D = {([us,vi], &)}y
of [a,b]. A is called the C-integral (Henstock integral) of f on [a,b], and
we write A= [* for A= (C) [*f (A= (H) [ /).

The function f is C-integrable on the set F C [a,b] if the function
fxE is C-integrable on [a,b]. We write [, f = ff fxe.

The basic properties of the C-integral, for example, linearity and
additivity with respect to intervals can be founded in [10]. We do not
present them here. The reader is referred to [10] for the details.
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DEFINITION 2.2. A function f : [a,b] — X is C-Dunford integrable
(Henstock-Dunford integrable) on [a,b] if z* f is C-integrable (Henstock
integrable) on [a, b] for each z* € X* and if for every subinterval [c,d] C

[a,b] there exists an element 2, € X** such that f o' f = afl (=)
for each z* € X*. We write

d
(C’D)/ f=al, €™

d
(HD) / f =gty € )

DEFINITION 2.3. A function f : [a,b] — X is C-Pettis integrable
(Henstock-Pettis integrable) on [a, b] if f is C-Dunford integrable (Henstock-

Dunford integrable) on [a b] and (CD) fdf € X (HD) fcdf € X) for
every interval [c,d] C [a,b]. We erte

CP/f CD/feX
(HP) / f = (HD) / fex)

The function f is C-Pettis integrable on the set £ C a,b] if the
function fxg is C-Pettis integrable on [a,b]. We write(CP) [, f =

(CP) [ fxe

THEOREM 2.4. f: [a,b] — X is C-Dunford integrable on [a,b] if and
only if x* f is C-integrable on |a,b] for each z* € X*.

Proof. If f is C-Dunford integrable on [a,b] for each z* € X*, then
x* f is C-integrable on [a, b] .

Now we prove the “ only if 7 part.

From [10,Theorem 3.3], z* f is C-integrable on [a, b] for each z* € X*,

then z* f is Henstock integrable on [a,b] and (H) ff z*f = (O) f; x*f.
Consequently, we have that f is Henstock-Dunford integrable on [a, b]
and for every subinterval [¢, d] C [a, b] there exists an element Tig € X
such that (H) fd a*f = ajfy(x") for each 2" € X* from [6,Theorem

8.2.26).
Since x* f is C-integrable on [c, d] and

i) [ “er=) / "ot =t

for each z* € X*. Hence f is C-Dunford integrable on [a, b]. O
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Similar to the case for the Henstock-Dunford and Henstock-Pettis
integrable functions, we can get the following two Theorems.

THEOREM 2.5. If the function f : [a,b] — X is C-Dunford integrable
on [a,b], then each perfect set in [a,b] contains a portion on which f is
Dunford integrable.

THEOREM 2.6. Suppose that X contains no copy of ¢y. If the function
f : [a,b] — X is C-Pettis integrable on [a,b], then each perfect set in
[a, b] contains a portion on which f is Pettis integrable.

From the definitions of Pettis integral and C-Pettis integral, we can
easily get the following theorem.

THEOREM 2.7. If a function f : [a,b] — X is Pettis integrable on
[a,b] then f is C-Pettis integrable on [a,b)].

THEOREM 2.8. If a function f : [a,b] — X is C-integrable on [a, b]
then f is C-Pettis integrable on [a, b].

Proof. f is C-integrable on [a, b], then x* f is C-integrable on [a, b] for
each z* € X* and (C) ff z*f =a2*((C) f; f) from [10,Theorem 2.7].

For each subinterval [c,d] C [a,b], we have (C) fcdf € X. Then f is
C-Pettis integrable on [a, b] and

(CP)/abf=(C)/abf-

REMARK 2.9. The following example show that the converse of The-
orem 2.5 is not true. In other words, there exists a function which is
C-Pettis integrable but is not C-integrable.

O

EXAMPLE 2.10. (a) Define a function f : [0,1] — loo(w1) by

1 if N N\Cyq,
(2.1) F(#)(e) = {0 ;f gfherv}ise.

where w; is the first uncountable ordinal. {Ng}aecw, and {Cy}acw, be
two collection of subsets of [0, 1] satisfying the following properties:

(1) for each @ € wy, N, is a set of zero Lebesgue measure,

(2) Na C Ng, if o < 8,

(3) every subset of [0, 1] of zero Lebesgue measure is contained in
some set N,

(4) for each a € wi, Cy is a countable set,
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(5) Co C O, if a < B,

(6) every countable subset of [0, 1] is contained in some set Cl,.

In [5,Example(CH)], L. Di Piazza and D.Preiss proved that f is Pettis
integrable but is not McShane integrable on [0, 1]. It is easy to know that
f is C-Pettis integrable on [0, 1] from Theorem 2.4. In [10,Theorem 3.4],
we proved that f is McShane integrable if and only if f is C-integrable
and Pettis integrable. Suppose that f is C-integrable on [0, 1], then
f is McShane integrable on [0,1]. This is a contradiction, so f is not
C-integrable on [0, 1].

3. Convergence theorem for the C-Pettis integral

DEFINITION 3.1. Let F,, F': [a,b] — R and let E be a subset of [a, b].

(a) F is said to be AC. on E if for each € > 0 there is a constant > 0
and a positive function §(¢) : E — R* such that Y, |F([u;, vi])| < € for
each ¢ - fine partial C-partition D = {([us, vi],&)} of [a,b] satisfying
& € E for each i and ), (v; — u;) <.

(b) F}, is said to be UAC, on E if for each € > 0 there is a constant
n > 0 and a positive function §(§) : E — R such that >, |F,([ui, vi])| <
e for all n and for each ¢ - fine partial C-partition D = {([u;, v;],&;)} of
[a, b] satisfying & € E for each i and ), (v; — u;) < 1.

(c) F is said to be ACG. on E if F' is continuous on E and E can be
expressed as a countable union of sets on each of which F' is AC..

(d) F is said to be UACG,. on E if F is continuous on F and F can
be expressed as a countable union of sets on each of which F is UAC..

THEOREM 3.2. Let f : [a,b] — X and assume that {f,} be a se-
quence of C-integrable functions. Assume that the following conditions
are satisfied:

(1) fn — f almost everywhere on [a, b].

(2) F,, are UACG., on |a, b]

Then f is C-integrable on [a,b] and

i) [ 1= [ 1
TL—>OO
Proof. The proof is standard and similar to [7, Theorem 5.5.2]. O

THEOREM 3.3. (Controlled Convergence Theorem) Let f : [a,b] — X
and assume that {f,} be a sequence of C-Pettis integrable functions.
Assume that the following conditions are satisfied:

(1) for each z* € X*, z* f,, — x* f almost everywhere on [a, b].
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(2) the family {z*F, : * € X*,n € N} is UACG, on [a,b].
Then f is C-Pettis integrable on [a,b] and

b b
lim (C’P)/ fn = (CP)/ [ (weakly).

n—oo

Proof. We will prove the Theorem in two steps.

Step 1. The sequence {f,} is C-Pettis integrable on [a,b], then for
each z* € X*, z* f,, is C-integrable on [a,b]. From Theorem 3.1 we have
that z* f is C-integrable on [a,b] and

lim (C) /:x*fn = (C)/abx*f.

Step 2. Assume [c, d] is an arbitrary subinterval of [a, b]. Let C denote
the weak closure of {(C'P) fcd fn :n € N} It is easy to see that C is

bounded and that C\{(CP) fcd fn 1 m € N} contains at most one point.
We claim that C is weakly compact.

Suppose C is not weakly compact, then there exists a bounded se-
quence (z7) C X*, a sequence (x,) C C and € > 0 such that

(3.1) xy(zn) =0 %fk:>n,
zp(zy) > € ifk<n.

We can take subsequence (g,) C (fn) and a sequence (y;) C xj such
that
d % .

(C) fc Ypgn =0 if £ > n,
(3.2) () fcd Yign > € if k <n,

lim,, o0 (C) fcd x*g, = (C) fcd x*f, for each z* € X*.

From [3,Lemma 1], we can find a subsequence (yzj) C (y;) such that

lim; y,’;j [ exists almost everywhere. Assume y; is a weak® cluster
point of (y;;) C (y}), then we have

lim yi f = yof
j—00
almost everywhere on [a, b]. It is not difficult to get that

d d
tim (©) [ ui,f = (C) [ wit.
J—o0 c c

To force a contradiction, note that for each j, we have that

jim (C) [ “yign = (©) / Y

n—oo
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d  « d «
When n > kj, from (3) we have that (C) [} Yg,gn > € and ) [ Y, [ =
€. Therefore
d d
lim (C’)/ Yr, [ = (C)/ yof > €.
J—0o0 c c
On the other hand, g, is C-Pettis integrable for each n, the functional
z* — (C) fcd x*g, is weak®— continuous. Then if (y}) is a subset of
(y;;j) weak™* converging to yg, by (3) and passing to the limit with n — oo
we have that
d d
lim lim(C)/ Yagn = lim lim yZ(C’P)/ Jn
c n—oo « c

n—oo o

d
— Jim i(cP) [ g,

n—oo

d
~ 1im (C) / yn

- (0)/cdy6f=0

which contradicts the inequality (C) fcd yof > €. Therefore the set C is
weakly compact.

Since limy, .« (C) fcd *f, = (O) fcd x*f, the sequence {(CP) fcd fnt
is weak Cauchy. It follows from the weak compactness of C that

d
Jmcr) [,

exists weakly in X. Moreover by [c, d] is an arbitrary subinterval of [a, b],
then f is C-Pettis integrable on [a, b] and

n—oo

b b
lim (CP)/ fn= (CP)/ [ (weakly).
O
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