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LIMIT SETS OF POINTS WHOSE STABLE
SETS HAVE NONEMPTY INTERIOR

Ki-Shik Koo*

Abstract. In this paper, we show that if a homeomorphism has the
pseudo-orbit-tracing-property and its nonwandering set is locally connected,
then the limit sets of wandering points whose stable sets have nonempty
interior consist of single periodic orbit.

1. Introduction and preliminaries

Throughout this paper, let X be a compact metric space with a met-

ric function d and f be a homeomorphism of X. Our purpose here is to

study dynamical properties of points whose limit sets consist of single pe-

riodic orbit, together with the related concepts of wanderingness and the

pseudo-orbit-tracing-property. In [4], Ruess and Summers studied the mo-

tions whose limit sets consist of a single periodic motion. In [3], Ombach

gave necessary and sufficient conditions that a limit set of a point consists

of a single periodic orbit under the condition that f is expansive homomor-

phism with the pseudo-orbit-tracing-property. Also, author studied stable

points whose limit sets consist of single periodic orbit [2].

In this work, we show that if a homeomorphism has the pseudo-orbit-

tracing-property and its nonwandering set is locally connected, then the

limit set of wandering point whose stable set have nonempty interior consists

of single periodic orbit.

For x in X, Of (x) and O+
f (x) denote the f -orbit and positive f -orbit

of x, respectively. Let ωf (x) and αf (x) denote the positive limit set and

negative limit set of x for f , respectively, and let Ω(f) be the nonwandering

set of f . A sequence of points {xi}i∈[a,b], (a < b) is called a δ-pseudo-orbit of
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f if d(f(xi), xi+1) < δ for i ∈ [a, b−1]. A finite pseudo-orbit {x0, x1, . . . , xn}
is called a pseudo-orbit from x0 to xn. A sequence of points {xi}i∈[a,b] is

called ε-traced by x ∈ X if d(f i(x), xi) < ε holds for i ∈ [a, b]. We say that

f has the pseudo-orbit-tracing-property if, for every ε > 0 there is δ > 0

such that every δ-pseudo-orbit of f can be ε-traced by some point x ∈ X.

A subset M of X is called f -minimal if f -orbit of every point in M is

dense in M . f is called topologically transitive if there is a point z in X

whose orbit is dense in X.

Let B(x, ε) denote {y ∈ X : d(x, y) < ε}.
Before we prove the main theorem, we prepare several lemmas. The

following results are well known.

Proposition 1.1. If f has the pseudo-orbit-tracing-property, then the

following properties hold:

(1) fk has the pseudo-orbit-tracing-property for every integer k 6= 0;

(2) f restricted to its nonwandering set has the pseudo-orbit-tracing-

property;

(3) Ω(f) = Ω(f |Ω(f));

(4) if Y is an open and closed f -invariant subset of X, then f restricted

to Y has the pseudo-orbit-tracing-property.

Proposition 1.2 [1]. If X is a nontrivial connected f -minimal set, then

f cannot have the pseudo-orbit-tracing-property.

2. Main results

In this section, we assume that f has the pseudo-orbit-tracing-property

and its nonwandering set is locally connected. Now, we give a decomposition

theorem for nonwandering sets.

Lemma 2.1. There exists a decomposition of Ω(f) satisfying the follow-

ing:

(1) There is a decomposition of Ω(f) into disjoint closed sets; Ω(f) =

Ω1∪Ω2∪· · ·∪Ωk such that each Ωi is f -invariant and f restricted to
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each Ωi is topologically transitive. (Such the subsets Ωi are called

basic sets.)

(2) Again, there is a decomposition of each Ωi into connected compo-

nents of Ω(f); Ωi = Ωi
1 ∪ Ωi

2 ∪ · · · ∪ Ωi
ni

such that these connected

components are permuted by f and the map fni restricted to each

Ωi
j is topologically transitive.

(3) Each basic set Ωi is contained in Ω(fni).

proof. The proofs of (a) and (b) are given in [2].

(3) Suppose that x is in Ωi. Let U be an open neighborhood of x and

N > 0 be an arbitrary integer. Then, by (3) of Proposition 1.1, there is y

in U ∩ Ω(f) and an integer n with n > N such that fn(y) is in U . Since

{Ωi
j} are permuted by f , n must be multiple of ni. This shows that x is in

Ω(fni). ¤

Remark. In the above lemma, each basic set is a chain component of

nonwandering set of f (see [2]).

We recall the definitions of stable and unstable sets. We define the stable

and unstable set of x for f by

W s(x, f) = {y ∈ X : lim
n→∞

d(fn(x), fn(y)) = 0}, and

Wu(x, f) = {y ∈ X : lim
n→∞

d(f−n(x), f−n(y)) = 0},

respectively.

Here, we introduce our main result.

Theorem 2.2. If x is an wandering point of f with int W s(x, f) 6= ∅,
then ωf (x) consists of one periodic orbit.

Proof. Let x be an wandering point and int W s(x, f) 6= ∅. Since each

basic set is a chain component of f , it is not difficult to show that each

limit set is contained in only one basic set of nonwandering set of f . Let

ωf (x) is contained in Ωi and {Ωi
j}, (1 ≤ j ≤ ni) is the set of connected

components of Ω(f) contained in Ωi. We now let fni = g, for convenience.
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Since ωg(x) ⊂ ωf (x) ⊂ Ωi, ωg(x) intersects some connected component in

Ωi. Let

Ωi
j0 ∩ ωg(x) 6= ∅ for some j0.

Again, we now let Ωi
j0

= K, for convenience. In view of the part (2) of

Lemma 2.1, g(K) = K holds.

Here, we claim that K is a g-minimal set. To see this, assume, on the

contrary, that K is not g-minimal. Then there is a proper subset M of K

which is g-minimal. Take points p, q, z such that

p ∈ ωg(x) ∩K, q ∈ K \M and z ∈ M,

and let d(q, M) = ε0. Since W s(x, f) ⊂ W s(x, g) and so, int W s(x, g) 6= ∅,
we can take a point y and a positive number γ with γ < ε0/2 such that

(1) y ∈ B(y, γ) ⊂ W s(x, g).

Let ε be a positive number satisfying ε < min{ε0/4, γ} and let δ = δ(ε) < ε

be a positive number with the property of the pseudo-orbit-tracing-property

of g. By (1), there exists a positive integer N1 such that

(2) d(gi(x), gi(y)) < δ for all i > N1.

Also, since p ∈ ωg(x), there is an integer N2 with N2 > 2N1 such that

(3) d(gN2(x), p) < δ.

By (2) and (3), the sequence of points defined by

(4) {ai}N2
i=0 = {y, g(y), g2(y), · · · , gN1(y), gN1+1(x) · · · , gN2−1(x), p}

is a δ-pseudo-orbit of g from y to p. By the part (3) of Lemma 2.1, we have

q ∈ Ω(g) and so, we get a periodic δ-pseudo-orbit {q0, q1, . . . , qn} of g from q

to q. Also, since g restricted to K is topologically transitive there is a point

in K whose g-orbit is dense in K. Therefore, we can find δ-pseudo-orbits of

g from p to q and p to z. Let

{b0 = p, b1, · · · bl = q} and {c0 = p, c1 · · · , cm = z}
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be δ-pseudo-orbits of g from p to q and p to g, respectively. Consider the

following two sequences of points defined by

{bi}∞i=0 = {a0, a1, · · · , aN2 , b1, · · · , bl, q1, · · · , qn, q1 · · · qn, q1, · · · } and

{ci}∞i=0 = {a0, a1, · · · , aN2 , c1, · · · , cm, f(z), f2(z), f3(z), · · · }.
Then {bi} and {ci} are δ-pseudo-orbit of g. Hence, there are two points yb

and yc, which are ε-tracing these two pseudo-orbit {bi} and {ci}, respec-

tively. In particular, we get

yb, yc ∈ B(y, ε) ⊂ B(y, γ) ⊂ W s(x, g).

Thus we have d(fn(yb), fn(yc)) −→ 0. So, there is an integer N3 such that

d(f i(yb), f i(yc)) < ε for all i > N3.

Let N = max{N2 + l, N2 + m, N3}. Then we can take an integer L with

L > N satisfying the following.

d(yb, q) < ε, d(yb, yc) < ε and d(yc, f
L−n−m−1(z)) < ε.

Therefore, we have

d(q, fL−l−m−1(z)) < d(q, yb) + d(yb, yc) + d(yc, f
L−l−m−1(z)) < 3ε.

Clearly, d(q,M) ≤ d(q, fL−l−m−1(z)). This shows that

d(q,M) < 3ε < ε0

This contradicts the fact that d(q,M) = ε0. We have shown that K is a

compact g-minimal set.

g restricted to Ω(g) has the pseudo-orbit-tracing-property and K is a

connected open and closed g-invariant subset of Ω(g) because Ω(g) ⊂ Ω(f).

Hence g restricted to K must have the pseudo-orbit-tracing-property. This

implies, in view of Proposition 1.2, K must be singleton. Let K = {w}.
Then g(w) = w implies fni(w) = w and therefore ωf (x) = Ωi consists of

only one periodic orbit {w, f(w), f2(w), · · · , fni−1(w)}. This completes the

proof of this theorem. ¤

Applying the above theorem to the inverse of f we get immediately

Corollary 2.3. If x is an wandering point of f with int Wu(x, f) 6= ∅,
then αf (x) consists of one periodic orbit.
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