PROPERTIES OF NOETHERIAN QUOTIENTS IN R-GROUPS

Yong Uk Cho*

ABSTRACT. In this paper, we will introduce the noetherian quotients in R-groups, and then investigate the related substructures of the near-ring R and G and the R-group G.

Also, applying the annihilator concept in R-groups and d.g. near-rings, we will survey some properties of the substructures of R and G in monogenic R-groups and faithful R-groups.

1. Introduction

A near-ring R is an algebraic system $(R, +, \cdot)$ with two binary operations, say + and \cdot such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, \cdot) is a semigroup and a(b+c)=ab+ac for all a, b, c in R. If R has a unity 1, then R is called a and a in a is called a and a in a is called a and a in a.

An *ideal* of R is a subset I of R such that (i) (I, +) is a normal subgroup of (R, +), (ii) $a(I + b) - ab \subset I$ for all $a, b \in R$, that is, $RI \subset I$, (iii) $(I + a)b - ab \subset I$ for all $a, b \in R$. If I satisfies (i) and (ii) then it is called a *left ideal* of R. If I satisfies (i) and (iii) then it is called a *right ideal* of R.

On the other hand, an invariant R-subgroup of R is a subset H of R such that (i) (H, +) is a subgroup of (R, +), (ii) $RH \subset H$ and (iii) $HR \subset H$. If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H satisfies (i) and (iii) then it is called a (right) R-subgroup of R. In case, (H, +) is normal in above, we say that normal invariant R-subgroup, normal left R-subgroup and normal (right) R-subgroup, respectively. Note that normal invariant R-subgroups of R are not equivalent to ideals of R.

Received June 1, 2007.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 16Y30.

Key words and phrases: annihilator, d.g. near-ring, monogenic R-group and faithful R-group.

We consider the following notations: Given a near-ring R, $R_0 = \{a \in R \mid 0a = 0\}$ which is called the zero symmetric part of R, $R_c = \{a \in R \mid 0a = a\} = \{a \in R \mid ra = a, for all \ r \in R\}$ which is called the constant part of R, and $R_d = \{a \in R \mid a \text{ is distributive}\}$ which is called the distributive part of R.

We note that R_0 and R_c are subnear-rings of R, but R_d is not a subnear-ring of R. A near-ring R with the extra axiom 0a = 0 for all $a \in R$, that is, $R = R_0$ is said to be zero symmetric, also, in case $R = R_c$, R is called a constant near-ring, and in case $R = R_d$, R is called a distributive near-ring.

From the Pierce decomposition theorem, we get

$$R = R_0 \oplus R_c$$

as additive groups. So every element $a \in R$ has a unique representation of the form a = b + c, where $b \in R_0$ and $c \in R_c$.

Let (G, +) be a group (not necessarily abelian). In the set

$$M(G) = \{ f \mid f : G \longrightarrow G \}$$

of all the self maps of G, We can define naturally, the sum f+g of any two mappings f,g in M(G) as the rule x(f+g)=xf+xg for all $x\in G$ and the product $f\cdot g$ as the rule $x(f\cdot g)=(xf)g$ for all $x\in G$, then $(M(G),+,\cdot)$ becomes a near-ring. It is called the *self map near-ring* on the group G. Also, we define the set

$$M_0(G) = \{ f \in M(G) \mid 0f = 0 \},\$$

then $(M_0(G), +, \cdot)$ is a zero symmetric near-ring.

Let R and S be two near-rings. Then a mapping θ from R to S is called a near-ring homomorphism if (i) $(a+b)\theta = a\theta + b\theta$, (ii) $(ab)\theta = a\theta b\theta$. We can replace homomorphism by momomorphism, epimorphism, isomorphism, endomorphism and automorphism, if these terms have their usual meanings as ring case [1].

Let R be any near-ring and G an additive group. Then G is called an R-group if there exists a near-ring homomorphism

$$\theta: (R, +, \cdot) \longrightarrow (M(G), +, \cdot).$$

Such a homomorphism θ is called a representation of R on G, we write that xr (right scalar multiplication in R) for $x(r\theta)$ for all $x \in G$ and $r \in R$. If R is unitary, then R-group G is called unitary. Thus an R-group is an additive group G satisfying (i) x(a+b) = xa+xb, (ii) x(ab) = (xa)b and (iii) x1 = x (If R has a unity 1), for all $x \in G$ and $a, b \in R$. Evidently, every near-ring R can be given the structure of an R-group (unitary if R is unitary) by right multiplication in R. Moreover, every group G has a natural M(G)-group structure, from the representation of M(G) on G given by applying the $f \in M(G)$ to the $x \in G$ as a scalar multiplication xf.

A representation θ of R on G is called faithful if $Ker\theta = \{0\}$. In this case, we say that G is called a faithful R-group.

For an R-group G, a subgroup T of G such that $TR \subset T$ is called an R-subgroup of G, a normal subgroup N of G such that $NR \subset N$ is called a normal R-subgroup of G and an R-ideal of G is a normal subgroup N of G such that $(N+x)a-xa\subset N$ for all $x\in G$, $a\in R$. Also, note that normal R-subgroups of G are not equivalent to an R-ideals of R.

Let R be a near-ring and let G be an R-group. If there exists x in G such that G = xR, that is, $G = \{xr \mid r \in R\}$, then G is called a *monogenic* R-group and the element x is called a *generator* of G [7].

For the remainder concepts and notations on near-rings, we refer to Meldrum [6], and Pilz [7].

2. Some results of Noetherian quotients in R-Groups

A near-ring R is called distributively generated (briefly, d.g.) if it contains a subsemigroup S of (R_d, \cdot) which generates the additive group (R, +), we denote it by (R, S). On the other hand, the set of all distributive elements of M(G) are obviously the semigroup End(G) of all endomorphisms of the group G under composition. Here we denote that E(G) is the d.g. near-ring generated by End(G), that is, E(G) is d.g. subnear-ring of $(M_0(G), +, \cdot)$ generated by End(G). It is said to be that E(G) is the endomorphism near-ring of the group G.

LEMMA 2.1 [5]. Let (R, S) be a d.g. near-ring. Then all R-subgroups and all R-homomorphic images of a (R, S)-group are also (R, S)-groups.

Now, we will consider the noetherian quotients which quote frequently, and investigate their related substructures of R and G.

Let G be an R-group and K, K_1 and K_2 be subsets of G. Define

$$(K_1:K_2):=\{a\in R; K_2a\subset K_1\}.$$

We abbreviate that for $x \in G$

$$(\{x\}:K_2)=:(x:K_2).$$

Similarly for $(K_1:x)$. (0:K) is called the *annihilator* of K, denoted it by Ann(K). We say that G is a faithful R-group or that R acts faithfully on G if $Ann(G) = \{0\}$, that is, $(0:G) = \{0\}$.

Also, we see that from the previous concepts to elementwise, a subgroup H of G such that $xa \in H$ for all $x \in H, a \in R$, is an R-subgroup of G, and an R-ideal of G is a normal subgroup N of G such that

$$(x+q)a - qa \in N$$

for all $g \in G, x \in N$ and $a \in R$ (Meldrum [6]).

PROPOSITION 2.2. Let G be an R-group and K_1 and K_2 subsets of G. Then we have the following conditions:

(1) If K_1 is a normal R-subgroup of G, then $(K_1 : K_2)$ is a normal right R-subgroup of R.

- (2) If K_1 is an R-subgroup of G, then $(K_1 : K_2)$ is a right R-subgroup of R
- (3) If K_1 is an R-ideal of G and K_2 is an R-subgroup of G, then $(K_1 : K_2)$ is a two-sided ideal of R.

Proof. (1) and (2) are proved by Meldrum [6]. Now, we prove only (3): Using the condition (1), $(K_1 : K_2)$ is a normal subgroup of R. Let $a \in (K_1 : K_2)$ and $r \in R$. Then

$$K_2(ra) = (K_2r)a \subset K_2a \subset K_1$$

so that $ra \in (K_1 : K_2)$. Whence $(K_1 : K_2)$ is a left ideal of R. Next, let $r_1, r_2 \in R$ and $a \in (K_1 : K_2)$. Then

$$k\{(a+r_1)r_2-r_1r_2\}=(ka+kr_1)r_2-kr_1r_2\in K_1$$

for all $k \in K_2$, since $K_2a \subset K_1$ and K_1 is an ideal of G. Thus $(K_1 : K_2)$ is a right ideal of R. Therefore $(K_1 : K_2)$ is a two-sided ideal of R.

COROLLARY 2.3 [6]. Let R be a near-ring and G an R-group.

- (1) For any $x \in G$, (0:x) is a right ideal of R.
- (2) For any R-subgroup K of G, (0:K) is a two-sided ideal of R.
- (3) For any subset K of G, $(0:K) = \bigcap_{x \in K} (0:x)$.

PROPOSITION 2.4. Let R be a near-ring and G an R-group. Then we have the following conditions:

- (1) Ann(G) is an ideal of R. Moreover G is a faithful R/Ann(G)-group.
- (2) For any $x \in G$, we get $xR \cong R/(0:x)$ as R-groups.

Proof. (1) By Corollary 2.3 and Proposition 2.2, Ann(G) is a two-sided ideal of R. We now make G an R/Ann(G)-group by defining, for $r \in R, r + Ann(G) \in R/Ann(G)$, the action x(r + Ann(G)) = xr. If r + Ann(G) = r' + Ann(G), then $-r' + r \in Ann(G)$ hence x(-r' + r) = 0 for all x in G, that is to say, xr = xr'. This tells us that

$$x(r + Ann(G)) = xr = xr' = x(r' + Ann(G));$$

thus the action of R/Ann(G) on G has been shown to be well defined. The verification of the structure of an R/Ann(G)-group is routine. Finally, to see that G is a faithful R/Ann(G)-group, we note that if x(r+Ann(G))=0 for all $x \in G$, then by the definition of R/Ann(G)-group structure, we have xr=0. Hence $r \in A(G)$. This says that only the zero element of R/Ann(G) annihilates all of G. Thus G is a faithful R/Ann(G)-group.

(2) For any $x \in G$, clearly xR is an R-subgroup of G. The map $\phi : R \longrightarrow xR$ defined by $\phi(r) = xr$ is an R-ephimorphism, so that from the isomorphism theorem, since the kernel of ϕ is (0:x), we deduce that

$$xR \cong R/(0:x)$$

as R-groups.

COROLLARY 2.5 [7]. Let G be a monogenic R-group with x as a generator. Then we have the following isomorphic relation.

$$G \cong R/Ann(x)$$
.

PROPOSITION 2.6. If R is a near-ring and G an R-group, then R/Ann(G) is isomorphic to a subnear-ring of M(G).

Proof. Let $a \in R$. We define $\tau_a : G \longrightarrow G$ by $x\tau_a = xa$ for each $x \in G$. Then τ_a is in M(G). Consider the mapping $\phi : R \longrightarrow M(G)$ defined by $\phi(a) = \tau_a$. Then obviously, we see that

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b)$,

that is, ϕ is a near-ring homomorphism from R to M(G).

Next, we must show that $Ker\phi = A(G)$. Indeed, if $a \in Ker\phi$, then $\tau_a = 0$, which implies that $Ga = G\tau_a = 0$, that is, $a \in A(G)$. On the other hand, if $a \in Ann(G)$, then by the definition of Ann(G), Ga = 0 hence $0 = \tau_a = \phi(a)$, this implies that $a \in Ker\phi$. Therefore from the first isomorphism theorem on R- groups, the image of R is a near-ring isomorphic to R/A(G). Consequently, R/A(G) is isomorphic to a subnearring of M(G).

Thus we can obtain the following important statement as in ring theory.

COROLLARY 2.7 [7]. If G is a faithful R-group, then R is embedded in M(G).

COROLLARY 2.8. If (R, S) is a d.g. near-ring, then every monogenic R-group is an (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then the map $\phi: r \mapsto xr$ is an R-epimorphism from R to G as R-groups. We see that by the Corollary 2.5,

$$G \cong R/A(x)$$
,

where $Ann(x) = Ker\phi$. From the Lemma 2.1, we see that G is an (R, S)-group.

Now, we get the following useful results of monogenic R-groups.

PROPOSITION 2.9. Let G be a monogenic R-group with generator x. Then we have the following properties:

- (1) For any right ideal I of R, xI is an R-ideal of G.
- (2) If I is a left R-subgroup of R and xI is an R-ideal of G, then I is an ideal of R.
- (3) If e is a right identity of R and if G is a faithful R-group, then e is a two-sided identity of R.

Proof. (1) Let $a \in G$. Then there exists $t \in R$ such that a = xt. Thus for each $xy \in xI$, $r \in R$, and $a \in G$,

$$(a + xy)r - ar = (xt + xy)r - (xt)r = x(t + y)r - x(tr)$$

$$= x\{(t+y)r - tr\} \in xI$$

By using similar method, it can be easily shown that xI is an additive normal subgroup of G. Therefore xI is an R-ideal of G.

(2) For any $y \in I$ and $a, b \in R$, we obtain the following equality:

$$x\{(y+a)b - ab\} = x(y+a)b - x(ab) = (xy + xa)b - (xa)b \in xI$$

Hence $(y+a)b-ab \in xI$. Similarly, we can show that I is an additive normal subgroup of R. Consequently, I is an ideal of R.

(3) First, let e be a right identity of R and g = xt be any element in G. Then we have the relation that

$$ge = (xt)e = x(te) = xt = g$$

Next, let r be any element of R and g be an arbitrary element in G. Then one gets the following equality that

$$q(er - r) = q(er) + q(-r) = (qe)r - qr = qr - qr = 0$$

Thus $(er - r) \in Ann(G)$.

Since G is faithful, it implies that er - r = 0, that is, er = r. Hence e is a two-sided identity of R.

References

- 1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- 2. G. Betsch, Primitive near-rings, Math. Z. 130 (1973), 351-361.
- C. G. Lyons and J. D. P. Meldrum, Characterizing series for faithful D.G. near-rings, Proc. Amer. Math. Soc. 72 (1978), 221-227.
- S. J. Mahmood and J. D. P. Meldrum, D.G. near-rings on the infinite dihedral groups, Near-rings and Near-fields (1987), 151-166.
- J. D. P. Meldrum, Upper faithful D.G. near-rings, Proc. Edinburgh Math. Soc. 26 (1983), 361-370.
- J. D. P, Meldrum, Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.
- G. Pilz, Near-rings, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983.

4

DEPARTMENT OF MATHEMATICS EDUCATION SILLA UNIVERSITY PUSAN 617-736, REPUBLIC OF KOREA

 $E ext{-}mail:$ yucho@silla.ac.kr