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GENERALIZED STABILITY OF EULER-LAGRANGE
TYPE QUADRATIC MAPPINGS

Ki-Wounce JUN * AND JEONG-HA OH **

ABSTRACT. In this paper, we investigate the generalized Hyers—
Ulam—Rasssias stability of the following Euler-Lagrange type qua-
dratic functional equation f(ax+by+cz)+ f(ax+by—cz)+ f(ax —
by + cz) + fax — by — cz) = 4a® f(x) + 462 f(y) + 42 f(2).

1. Introduction

In 1940, S. M. Ulam [12] gave a talk before the Mathematics Club of
the University of Wisconsin in which he discussed a number of unsolved
problems. Among these was the following question concerning the sta-
bility of homomorphisms. Let G be a group and let G' be a metric group
with metric p(-,-). Given € > 0, does there exist a § > 0 such that if
[+ G — G satisfies p(f(zy), f(x)f(y)) < & for all z,y € G, then a
homomorphism h : G — G’ exists with p(f(z),h(x)) < € for allz € G?

In 1941, D. H. Hyers [3] considered the case of approximately additive
mappings f : E — E’, where FE and E’ are Banach spaces and f satisfies
Hyers inequality

[f(x+y) = flz) - fyl <e
f@")

for all z,y € E. It was shown that the limit L(z) = lim, .o —57—>
exists for all z € E and that L : E — E’ is the unique additive mapping
satisfying

If(z) — L(z)[| <e.

Let Eq1 and E5 be real vector spaces. A function f : 1 — FEo, there
exists a quadratic function if and only if f is a solution function of the
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quadratic functional equation

(1.1) flx+y)+ flx—y) =2f(x)+2f(y).

A stability problem for the quadratic functional equation (1.1) was
solved by F. Skof [11] for mapping f : E; — FEo, where Fj is a normed
space and FE5 is a Banach space.

In 1978, Th. M. Rassias [7] provided a generalization of Hyers’ Theo-
rem which allows the Cauchy difference to be unbounded. S. Czerwik [2]
proved the Hyers-Ulam-Rassias stability of quadratic functional equa-
tion (1.1). Let E; and Es be a real normed space and a real Banach
space, respectively, and let p # 2 be a positive constant. If a function
f : E1 — E» satisfies the inequality

If(z+y) + flz —y) = 2f (@) = 2f ()| < e(ll=]” + [ly[”)

for some € > 0 and for all z,y € E1, then there exists a unique quadratic
function g : £1 — FE5 such that
2¢

I9) =~ a@)l < =5

for all x € G. In partiqular , we note that J.M. Rassias introduced
the Euler-Lagrange quadratic mappings, motivated from the following
pertinent algebraic equation
(1.2) jaz + by[* + [bx — ay[* = (a® + ) [|2[* + |y|*).
Thus the second author of this paper introduced ad investigated the sta-
bility problem of Ulam for the relative Euler-Lagrange functional equa-
tion
(13)  flaz +by) + f(bx — ay) = (a® + ) [f(2) + f(y)]
in the publications[8-10].
Recently, S.M Jung [5] and J. Bae, K. Jun and S. Jung [1] have
generalized the equation (1.1) to
fe+y+z) + fe—y+2)+fl@aty—2)+flz-y—2)
(1.4) = Af(x) +4f(y) +4f(2)
and then have investigated the general solution and the stability problem
for the functional equation.
Now, we consider the following functional equations
flaz+by+cz) + flax + by —cz)
(1.5) + flax —by + cz) + flax — by — cz)
= da’f(x) +40° f(y) + 42 f(2),

[E41ig
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where a, b, ¢ # 0 are real numbers.

In this paper, we will establish the general solution and the gener-
alized Hyers-Ulam-Rassias stability problem for the equation (1.5) in
Banach spaces.

2. Euler-Lagrange type quadratic mapping in Banach spaces

LEMMA 2.1. Let X and Y be vector spaces. If a mapping f: X — Y
satisfies f(0) = 0 and
flaz +by+cz) + flax+ by —cz)
+ flax —by+ cz) + flax — by — c2)
= da’f(z) +40° f(y) + 42 f(2)

for all z,y,z € X, then the mapping f is quadratic and f(\"z) =
A2 f(x), where A = a,b or c.

(2.1)

Proof. Letting =y in (2.1), we get
flla+b)z+ecz) + f((a+b)x—c2)
(2.2) + f(la=b)z+cz)+ f((a—b)x —cz)
= 4da’f(x) + 4V f(x) + 42 f(2)
for all z,z € X. Setting y = —z in (2.1), we obtain
flla=b)z+cz) + f(la—Db)z—c2)
(2.3) + f((a+b)z+cz)+ f((a+b)x —cz)
= 4a?f(x) + 4V f(—z) + 43 f(2).
By (2.2) and (2.3), we conclude that f is even. And by setting y = 0
and z = 0 in (2.1), we get f(az) = a®f(x) for all z € X. So, it is easy
to verify f(a"x) = a®" f(x) by induction. Similarly, we have the identity
for b and ¢. Now, substituting 0 for z in (2.1), one obtains
flaz+by)+ flaz —by) = 2a2f(x) + 2021 (y)
= 2f(ax) + 2f(by).

for all x,y € X. Hence f is quadratic. O

The mapping f : X — Y given in the statement of Lemma 2.1 is
called an Fuler-Lagrange type quadratic mapping. Putting z = 0 in
(2.1) with @ = 1 = b, we get the quadratic mapping f(z+y)+ f(x—y) =
2f(x) +2f(y).
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From now on, Let X and Y be a normed vector space and a Banach
space, respectively.
For a given mapping f: X — Y, we define
Df(x,y,z) = flax+by+cz)+ flax+ by —cz) + flax — by + c2)
T+ flaw — by — c2) — 402 f(z) — 4B f(y) — Af(2)
forall z,y,z € X

THEOREM 2.2. Let f: X — Y be a mapping satisfying f(0) = 0 for
which there exists a function ¢ : X3 — [0, 00) such that

(2.4) O(z,y,2) = Za%qﬁ(%, %, %) < 00,
j=1
(2.5) IDf(z,y,2)|| < ¢(z,y, 2)

for all x,y,z € X. Then there exists a unique Euler-Lagrange type
quadratic mapping @ : X — Y such that DQ(z,y,z) = 0 and

1
(26) 17(2) ~ Q) < 5(x,0,0)
forallxz € X.
Proof. Letting y = 0 and z = 0 in (2.5), we get

|f(az) ~ @ f@)] < {6(x,0,0)

for all z € X. So
T

|#@) =255 < o(Z.0.0)

for all x € X. Hence

oG =G| < 3 o) s ()]

(500

for all # € X. It means that a sequence {a*"f(:%)} is Cauchy for all
x € X. Since Y is complete, the sequence {a*" f(:%)} converges. So one
can define a mapping Q : X — Y by Q(z) := lim,_.oc a® f(Z) for all
reX.

(2.7)

[N
NE
e
3
T
<
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By (2.4) and (2.5),

1DQr,y 2) = lim o®||Df (2, 2 2|
< lim a2”q5< Y i) =0

n— 00 an’ an’ am
for all z,y,z € X. So DQ(z,y,z) = 0. By Lemma 2.1, the mapping
Q : X — Y is quadratic.
Moreover, letting [ = 0 and passing the limit m — oo in (2.7), we get
the approximation (2.6) of f by Q.
Now, let ' : X — Y be another quadratic mapping satisfying (2.6).
Then we obtain

Q@) - Q@) = o™

L otm—1) x
S Sa ®<77070)7
2 a™

which tends to zero as n — co. So we can conclude that Q(z) = Q'(z)
for all x € X. This proves the uniqueness of ). Hence the mapping
Q@ : X — Y is a unique quadratic mapping satisfying (2.6). O

Q=) - Q=)

an

~ ()

an

H

COROLLARY 2.3. Let p and 6 be positive real numbers such that
either p > 2 and |a|] > 1 orp<2and|a| <1, andlet f: X — Y bea
mapping satisfying f(0) =0 and
(2.8) IDf(,y, 2)|| < Ol ]l” + [lyll” + [1[1*),

for all x,y,z € X. Then there exists a unique Euler-Lagrange type
quadratic mapping @ : X — Y such that

0-|l=|”

(2.9) 1@ = Q@I < Thp o
for allz € X.

Proof. Define ¢(x,y,z) = 0(||z||? + ||y||” + ||2||), and apply Theorem
2.2. O

THEOREM 2.4. Let f : X — Y be a mapping satisfying f(0) = 0 for
which there exists a function ¢ : X3 — [0, 00) such that

[o.¢]
1 S
(2.10) O(x,y,z2) = Zﬁd)(a]x,ajy,a]z) < 00,
j=0

(2.11) IDf(x,y,2)|| < ¢(x,y, 2)
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for all x,y,z € X. Then there exists a unique Euler-Lagrange type
quadratic mapping ) : X — Y such that DQ(z,y,z) = 0 and

(2.12) [f(z) = Qz)| < @‘P(ﬂf 0,0)
for allx € X.

Proof. Letting y =0 and z =0 in (2.11), we get

|f(az) ~ @) < {6(x,0,0)

for all z € X. So

Hf faa: H :L o(x,0,0)
for all z € X.
Hence
s esas] < 3 ateg oo s
(2.13) < Zm: ﬁgf)(aj_lx,(),())
J=l+1

for all x € X. It means that a sequence { —w= f(a"z)} is Cauchy for all
x € X. Since Y is complete, the sequence {a2” (a"x)} converges. So

one can define a mapping @ : X — Y by Q(z) := lim, a%nf(a"x) for
all z € X.

By (2.10) and (2.11),

1
HDQ(xayvz)H = lim ?”Df(anl,’any’anz)”
n—oo q<"

1
_Jl_}n;oaTqb(a z,a"y,a"z) =0
for all z,y,z € X. So DQ(z,y,z) = 0. By Lemma 2.1, the mapping
Q@ : X — Y is a quadratic.
Moreover, letting [ = 0 and passing the limit m — oo in (2.13), we
get the approximation (2.12) of f by Q.
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Now, let @' : X — Y be another quadratic mapping satisfying
(2.12) . Then we obtain

10w - Q@I = ) - Q)]

< llQs) — fa"a)] + 1@ a"s) ~ Fa"a)]]
1

= 242(n+1) o

(anl" 0’ 0)7

which tends to zero as n — oo. So we can conclude that Q(x) = Q'(z)
for all x € X. This proves the uniqueness of ). Hence the mapping
Q@ : X — Y is a unique quadratic mapping satisfying (2.12). O

COROLLARY 2.5. Let p and 6 be positive real numbers with either
p<2and|a] >1orp>2andla| <1, andlet f: X — Y bea mapping
satisfying f(0) = 0 and

(2.14) 1D f (@, y, ) < Ol + llyll” + 11211"),

for all x,y,z € X. Then there exists a unique Euler-Lagrange type
quadratic mapping @ : X — Y such that

(215) I£() - Q) < gt

(a® — |al?)
forallx € X.

Proof. Define ¢(x,y, z) = 0(||z||? + ||y||” + ||z||"), and apply Theorem
2.4. O

COROLLARY 2.6. Let f : X — Y be a mapping satisfying f(0) = 0
for which there exists a nonnegative number 6 such that

(2.16) IDf(x,y,2)|| <0

for all z,y,z € X. If |a|] # 1, then there exists a unique Euler-Lagrange
type quadratic mapping () : X — Y such that
| < L

~ 4]1 — a?|

(2.17) 1f(z) — Q)|

for all x € X.

Proof. Define ¢(z,y,z) = 0, and apply Theorem 2.2 and Theorem
2.4 . O
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