GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

KIL-WOUNG JUN * AND JEONG-HA OH **

ABSTRACT. In this paper, we investigate the generalized Hyers–Ulam–Rasssias stability of the following Euler-Lagrange type quadratic functional equation $f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$.

1. Introduction

In 1940, S. M. Ulam [12] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. Let G be a group and let G' be a metric group with metric $\rho(\cdot,\cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f:G\to G'$ satisfies $\rho(f(xy),f(x)f(y))<\delta$ for all $x,y\in G$, then a homomorphism $h:G\to G'$ exists with $\rho(f(x),h(x))<\epsilon$ for all $x\in G$?

In 1941, D. H. Hyers [3] considered the case of approximately additive mappings $f: E \to E'$, where E and E' are Banach spaces and f satisfies Hyers inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x, y \in E$. It was shown that the limit $L(x) = \lim_{n\to\infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in E$ and that $L: E \to E'$ is the unique additive mapping satisfying

$$||f(x) - L(x)|| \le \epsilon.$$

Let E_1 and E_2 be real vector spaces. A function $f: E_1 \to E_2$, there exists a quadratic function if and only if f is a solution function of the

Received October 30, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B62; Secondary 39B82.

Key words and phrases: Euler-Lagrange type quadratic mapping, generalized Hyers-Ulam stability, functional inequality.

This work was supported by the second Brain Korea 21 Project in 2006.

quadratic functional equation

$$(1.1) f(x+y) + f(x-y) = 2f(x) + 2f(y).$$

A stability problem for the quadratic functional equation (1.1) was solved by F. Skof [11] for mapping $f: E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space.

In 1978, Th. M. Rassias [7] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded. S. Czerwik [2] proved the Hyers-Ulam-Rassias stability of quadratic functional equation (1.1). Let E_1 and E_2 be a real normed space and a real Banach space, respectively, and let $p \neq 2$ be a positive constant. If a function $f: E_1 \to E_2$ satisfies the inequality

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for some $\epsilon > 0$ and for all $x, y \in E_1$, then there exists a unique quadratic function $q: E_1 \to E_2$ such that

$$||f(x) - q(x)|| \le \frac{2\epsilon}{|4 - 2^p|} ||x||^p$$

for all $x \in G$. In partiqular , we note that J.M. Rassias introduced the Euler-Lagrange quadratic mappings, motivated from the following pertinent algebraic equation

$$(1.2) |ax + by|^2 + |bx - ay|^2 = (a^2 + b^2)[|x|^2 + |y|^2].$$

Thus the second author of this paper introduced ad investigated the stability problem of Ulam for the relative Euler-Lagrange functional equation

(1.3)
$$f(ax + by) + f(bx - ay) = (a^2 + b^2)[f(x) + f(y)]$$
 in the publications [8-10].

Recently, S.M Jung [5] and J. Bae, K. Jun and S. Jung [1] have generalized the equation (1.1) to

$$f(x+y+z) + f(x-y+z) + f(x+y-z) + f(x-y-z)$$
(1.4) = $4f(x) + 4f(y) + 4f(z)$

and then have investigated the general solution and the stability problem for the functional equation.

Now, we consider the following functional equations

(1.5)
$$f(ax + by + cz) + f(ax + by - cz) + f(ax - by + cz) + f(ax - by - cz) = 4a^2 f(x) + 4b^2 f(y) + 4c^2 f(z),$$

where $a, b, c \neq 0$ are real numbers.

In this paper, we will establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for the equation (1.5) in Banach spaces.

2. Euler-Lagrange type quadratic mapping in Banach spaces

LEMMA 2.1. Let X and Y be vector spaces. If a mapping $f: X \to Y$ satisfies f(0) = 0 and

for all $x, y, z \in X$, then the mapping f is quadratic and $f(\lambda^n x) = \lambda^{2n} f(x)$, where $\lambda = a, b$ or c.

Proof. Letting x = y in (2.1), we get

$$f((a+b)x + cz) + f((a+b)x - cz) + f((a-b)x + cz) + f((a-b)x - cz)$$

$$= 4a^2f(x) + 4b^2f(x) + 4c^2f(z)$$

for all $x, z \in X$. Setting y = -x in (2.1), we obtain

$$f((a-b)x + cz) + f((a-b)x - cz) + f((a+b)x + cz) + f((a+b)x - cz)$$

$$= 4a^{2} f(x) + 4b^{2} f(-x) + 4c^{2} f(z).$$

By (2.2) and (2.3), we conclude that f is even. And by setting y = 0 and z = 0 in (2.1), we get $f(ax) = a^2 f(x)$ for all $x \in X$. So, it is easy to verify $f(a^n x) = a^{2n} f(x)$ by induction. Similarly, we have the identity for b and c. Now, substituting 0 for z in (2.1), one obtains

$$f(ax + by) + f(ax - by) = 2a^2 f(x) + 2b^2 f(y)$$

= $2f(ax) + 2f(by)$.

for all $x, y \in X$. Hence f is quadratic.

The mapping $f: X \to Y$ given in the statement of Lemma 2.1 is called an *Euler-Lagrange type quadratic mapping*. Putting z = 0 in (2.1) with a = 1 = b, we get the quadratic mapping f(x+y) + f(x-y) = 2f(x) + 2f(y).

From now on, Let X and Y be a normed vector space and a Banach space, respectively.

For a given mapping $f: X \to Y$, we define

$$Df(x,y,z) := f(ax + by + cz) + f(ax + by - cz) + f(ax - by + cz) + f(ax - by - cz) - 4a^2 f(x) - 4b^2 f(y) - 4c^2 f(z)$$

for all $x, y, z \in X$

THEOREM 2.2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 for which there exists a function $\phi: X^3 \to [0, \infty)$ such that

(2.4)
$$\Phi(x,y,z) := \sum_{j=1}^{\infty} a^{2j} \phi\left(\frac{x}{a^j}, \frac{y}{a^j}, \frac{z}{a^j}\right) < \infty,$$

(2.5)
$$||Df(x, y, z)|| \le \phi(x, y, z)$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \to Y$ such that DQ(x, y, z) = 0 and

(2.6)
$$||f(x) - Q(x)|| \le \frac{1}{4a^2} \Phi(x, 0, 0)$$

for all $x \in X$.

Proof. Letting y = 0 and z = 0 in (2.5), we get

$$||f(ax) - a^2 f(x)|| \le \frac{1}{4}\phi(x, 0, 0)$$

for all $x \in X$. So

$$\left\| f(x) - a^2 f(\frac{x}{a}) \right\| \le \frac{1}{4} \phi(\frac{x}{a}, 0, 0)$$

for all $x \in X$. Hence

$$\left\| a^{2l} f\left(\frac{x}{a^{l}}\right) - a^{2m} f\left(\frac{x}{a^{m}}\right) \right\| \leq \sum_{j=l+1}^{m} \left\| a^{2(j-1)} f\left(\frac{x}{a^{j-1}}\right) - a^{2j} f\left(\frac{x}{a^{j}}\right) \right\|$$

$$\leq \sum_{j=l+1}^{m} \frac{1}{4} a^{2(j-1)} \phi\left(\frac{x}{a^{j}}, 0, 0\right)$$

$$(2.7)$$

for all $x \in X$. It means that a sequence $\{a^{2n}f(\frac{x}{a^n})\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{a^{2n}f(\frac{x}{a^n})\}$ converges. So one can define a mapping $Q: X \to Y$ by $Q(x) := \lim_{n \to \infty} a^{2n}f(\frac{x}{a^n})$ for all $x \in X$.

By (2.4) and (2.5),

$$\begin{split} \|DQ(x,y,z)\| &= \lim_{n \to \infty} a^{2n} \Big\| Df\Big(\frac{x}{a^n},\frac{y}{a^n},\frac{z}{a^n}\Big) \Big\| \\ &\leq \lim_{n \to \infty} a^{2n} \phi\Big(\frac{x}{a^n},\frac{y}{a^n},\frac{z}{a^n}\Big) = 0 \end{split}$$

for all $x,y,z\in X$. So DQ(x,y,z)=0. By Lemma 2.1, the mapping $Q:X\to Y$ is quadratic.

Moreover, letting l=0 and passing the limit $m\to\infty$ in (2.7), we get the approximation (2.6) of f by Q.

Now, let $Q': X \longrightarrow Y$ be another quadratic mapping satisfying (2.6). Then we obtain

$$||Q(x) - Q'(x)|| = a^{2n} ||Q(\frac{x}{a^n}) - Q(\frac{x}{a^n})||$$

$$\leq a^{2n} [||Q(\frac{x}{a^n}) - f(\frac{x}{a^n})|| + ||Q'(\frac{x}{a^n}) - f(\frac{x}{a^n})||]$$

$$\leq \frac{1}{2} a^{2(n-1)} \Phi(\frac{x}{a^n}, 0, 0),$$

which tends to zero as $n \to \infty$. So we can conclude that Q(x) = Q'(x) for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \to Y$ is a unique quadratic mapping satisfying (2.6).

COROLLARY 2.3. Let p and θ be positive real numbers such that either p > 2 and |a| > 1 or p < 2 and |a| < 1, and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.8) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p),$$

for all $x,y,z\in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q:X\to Y$ such that

(2.9)
$$||f(x) - Q(x)|| \le \frac{\theta \cdot ||x||^p}{4(|a|^p - a^2)}$$

for all $x \in X$.

Proof. Define $\phi(x,y,z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.2.

THEOREM 2.4. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 for which there exists a function $\phi: X^3 \to [0, \infty)$ such that

(2.10)
$$\Phi(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{a^{2j}} \phi(a^j x, a^j y, a^j z) < \infty,$$

(2.11)
$$||Df(x, y, z)|| \le \phi(x, y, z)$$

for all $x, y, z \in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \to Y$ such that DQ(x, y, z) = 0 and

(2.12)
$$||f(x) - Q(x)|| \le \frac{1}{4a^2} \Phi(x, 0, 0)$$

for all $x \in X$.

Proof. Letting y = 0 and z = 0 in (2.11), we get

$$||f(ax) - a^2 f(x)|| \le \frac{1}{4}\phi(x, 0, 0)$$

for all $x \in X$. So

$$\left\| f(x) - \frac{1}{a^2} f(ax) \right\| \le \frac{1}{4a^2} \phi(x, 0, 0)$$

for all $x \in X$.

Hence

$$\left\| \frac{1}{a^{2l}} f(a^{l}x) - \frac{1}{a^{2m}} f(a^{m}x) \right\| \leq \sum_{j=l+1}^{m} \left\| \frac{1}{a^{2(j-1)}} f(a^{j-1}x) - \frac{1}{a^{2j}} f(a^{j}x) \right\|$$

$$\leq \sum_{j=l+1}^{m} \frac{1}{4a^{2j}} \phi(a^{j-1}x, 0, 0)$$
(2.13)

for all $x \in X$. It means that a sequence $\{\frac{1}{a^{2n}}f(a^nx)\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{a^{2n}}f(a^nx)\}$ converges. So one can define a mapping $Q: X \to Y$ by $Q(x) := \lim_{n \to \infty} \frac{1}{a^{2n}}f(a^nx)$ for all $x \in X$.

By (2.10) and (2.11),

$$||DQ(x,y,z)|| = \lim_{n \to \infty} \frac{1}{a^{2n}} ||Df(a^n x, a^n y, a^n z)||$$

$$\leq \lim_{n \to \infty} \frac{1}{a^{2n}} \phi(a^n x, a^n y, a^n z) = 0$$

for all $x,y,z\in X$. So DQ(x,y,z)=0. By Lemma 2.1, the mapping $Q:X\to Y$ is a quadratic.

Moreover, letting l=0 and passing the limit $m\to\infty$ in (2.13), we get the approximation (2.12) of f by Q.

Now, let $Q': X \longrightarrow Y$ be another quadratic mapping satisfying (2.12) . Then we obtain

$$||Q(x) - Q'(x)|| = \frac{1}{a^{2n}} ||Q(a^n x) - Q'(a^n x)||$$

$$\leq \frac{1}{a^{2n}} [||Q(a^n x) - f(a^n x)|| + ||Q'(a^n x) - f(a^n x)||]$$

$$\leq \frac{1}{2a^{2(n+1)}} \Phi(a^n x, 0, 0),$$

which tends to zero as $n \to \infty$. So we can conclude that Q(x) = Q'(x) for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \to Y$ is a unique quadratic mapping satisfying (2.12).

COROLLARY 2.5. Let p and θ be positive real numbers with either p < 2 and |a| > 1 or p > 2 and |a| < 1, and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.14) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p),$$

for all $x,y,z\in X$. Then there exists a unique Euler-Lagrange type quadratic mapping $Q:X\to Y$ such that

(2.15)
$$||f(x) - Q(x)|| \le \frac{\theta \cdot ||x||^p}{4(a^2 - |a|^p)}$$

for all $x \in X$.

Proof. Define $\phi(x,y,z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.4.

COROLLARY 2.6. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 for which there exists a nonnegative number θ such that

$$(2.16) ||Df(x,y,z)|| \le \theta$$

for all $x, y, z \in X$. If $|a| \neq 1$, then there exists a unique Euler-Lagrange type quadratic mapping $Q: X \to Y$ such that

(2.17)
$$||f(x) - Q(x)|| \le \frac{\theta}{4|1 - a^2|}$$

for all $x \in X$.

Proof. Define $\phi(x,y,z)=\theta,$ and apply Theorem 2.2 and Theorem 2.4 .

References

- [1] J. H. Bae, K. W. Jun and S.M. Jung, On the stability of a quadratic funtional equation, Kyungpook Math. J. 43 (2003), 415–423.
- [2] S. Czerwik, On the stability of the mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [4] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- [5] S. M. Jung, Quadratic functional equations of Pexider thpe, Interant. J. Math. Math. Sci. 24 (2000), 351–359.
- [6] C. Park, W. Park, On the Jensen's equation in Banach modules, Taiqanese J. Math. 6 (2002), 523–300.
- [7] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [8] J. M. Rassisa, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185–190.
- [9] J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), 231–235.
- [10] J. M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29 (1996), 755–766.
- [11] F. Skof, Local properties and approximations of operators(Italian), Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129.
- [12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

*

Department of Mathematics Chungnam National University Daejeon, 305–764, Republic of Korea E-mail: kwjun@math.cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon, 305–764, Republic of Korea E-mail: jhoh@cnu.ac.kr