STABILITY OF A GENERALIZED JENSEN TYPE QUADRATIC FUNCTIONAL EQUATIONS

KIL-WOUNG JUN* AND YOUNG-SUN CHO**

ABSTRACT. In this paper, we investigate the Hyers–Ulam–Rassias stability of generalized Jensen type quadratic functional equations in Banach spaces.

1. Introduction

In 1940, S. M. Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Let G be a group and let G' be a metric group with metric $\rho(\cdot,\cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f: G \to G'$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h: G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G$?

In 1941, D. H. Hyers [2] considered the case of an approximately additive mapping $f: E \to E'$, where E and E' are Banach spaces and f satisfies Hyers inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x, y \in E$. It was shown that the limit $L(x) = \lim_{n\to\infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in E$ and that $L: E \to E'$ is the unique additive mapping satisfying

$$||f(x) - L(x)|| < \epsilon.$$

Let E_1 and E_2 be real vector spaces. A function $f: E_1 \to E_2$, there exists a quadratic function if and only if f is a solution function of the

Received October 30, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B62; Secondary 39B82.

Key words and phrases: Jensen type quadratic mapping, generalized Hyers–Ulam–Rassias stability, functional inequality.

This work was supported by the second Brain Korea 21 Project in 2006.

quadratic functional equation

(1.1)
$$f(x+y) - f(x-y) = 2f(x) + 2f(y).$$

A stability problem for the quadratic functional equation (1.1) was solved by F. Skof [3] for a mapping $f: E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space.

In 1978, Th. M. Rassias [4] provided a generalization of Hyers' Theorem which allows the *Cauchy difference to be unbounded*.

S. Czerwik [5] proved the Hyers-Ulam-Rassias stability of quadratic functional equation (1.1). Let E_1 and E_2 be a real normed space and a real Banach space, respectively, and let $p \neq 2$ be a positive constant. If a function $f: E_1 \to E_2$ satisfies the inequality

$$||f(x+y) - f(x-y) - 2f(x) - 2f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for some $\epsilon > 0$ and for all $x, y \in E_1$, then there exists a unique quadratic function $q: E_1 \to E_2$ such that

$$||f(x) - q(x)|| \le \frac{2\epsilon}{|4 - 2^p|} ||x||^p$$

for all $x \in G$.

A mapping $g:X\to Y$ is called a *Jensen mapping* if g satisfies the functional equation

$$2g(\frac{x+y}{2}) = g(x) + g(y)$$

for all $x, y \in X$.

Jun and Lee [6] proved the following : Let X and Y be Banach spaces. Denote by $\varphi: X \setminus \{0\} \times X \setminus \{0\} \rightarrow [0, \infty)$ function such that

$$\psi(x,y) = \sum_{i=0}^{\infty} 3^{-k} \varphi(3^k x, 3^k y) < \infty$$

for all $x, y \in X \setminus \{0\}$. Suppose that $f: X \to Y$ is a mapping satisfying

$$||2f(\frac{x+y}{2}) - f(x) - f(y)|| \le \varphi(x,y)$$

for all $x,y\in X\setminus\{0\}$. Then there exists a unique additive mapping $T:X\to Y$ such that

$$||f(x) - f(0) - T(x)|| \le \frac{1}{3} (\psi(x, -x) + \psi(-x, 3x))$$

for all $x \in X \setminus \{0\}$. Recently C. Park and W. Park [7] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^* -algebra.

Now, we consider the following functional equation

$$f(\frac{x+y}{a} + bz) + f(\frac{x+y}{a} - bz) + f(\frac{x-y}{a} + bz) + f(\frac{x-y}{a} - bz)$$

$$= \frac{4}{a^2}f(x) + \frac{4}{a^2}f(y) + 4b^2f(z),$$

where $a, b \neq 0$ are real numbers.

In this paper, we will establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for the equation (1.2) in Banach spaces.

2. Jesen type quadratic mapping in Banach spaces

Lemma 2.1. Let X and Y be vector spaces. If a mapping $f: X \to Y$ satisfies f(0) = 0 and

$$f(\frac{x+y}{a}+bz) + f(\frac{x+y}{a}-bz) + f(\frac{x-y}{a}+bz) + f(\frac{x-y}{a}-bz)$$

$$= \frac{4}{a^2}f(x) + \frac{4}{a^2}f(y) + 4b^2f(z)$$

for all $x, y, z \in X$, then the mapping f is quadratic.

Proof. Letting x = y in (2.1), we get

(2.2)
$$f(\frac{2x}{a} + bz) + f(\frac{2x}{a} - bz) + f(bz) + f(-bz) = \frac{8}{a^2} f(x) + 4b^2 f(z)$$

for all $x, z \in X$. Letting x = 0 in (2.2), we get $2f(bz) + 2f(-bz) = 4b^2f(z)$. Setting y = -x in (2.1), we obtain

(2.3)
$$f(\frac{2x}{a} + bz) + f(\frac{2x}{a} - bz) + f(bz) + f(-bz) = \frac{4}{a^2}f(x) + \frac{4}{a^2}f(-x) + 4b^2f(z).$$

By (2.2) and (2.3), we conclude that f is even. And by setting z=0 in (2.2), we get $f(\frac{2x}{a})=\frac{4}{a^2}f(x)$ for all $x\in X$. So, we get

$$f(\frac{2x}{a} + bz) + f(\frac{2x}{a} - bz) = 2f(\frac{2x}{a}) + 2f(bz)$$

for all $x, z \in X$. Hence f is quadratic.

The mapping $f: X \to Y$ given in the statement of Lemma 2.1 is called a generalized Jensen type quadratic mapping. Putting z=0 in (2.1) with a=2, we get the Jensen type quadratic mapping $2f(\frac{x+y}{2})+2f(\frac{x-y}{2})=f(x)+f(y)$, and putting x=y in (2.1) with a=2 and b=1, we get the quadratic mapping f(x+z)+f(x-z)=2f(x)+2f(z).

From now on, let X and Y be a normed vector space and a Banach space ,respectively.

For a given mapping $f: X \to Y$, we define

$$\begin{split} Df(x,y,z) &:= f(\frac{x+y}{a} + bz) + f(\frac{x+y}{a} - bz) + f(\frac{x-y}{a} + bz) \\ &+ f(\frac{x-y}{a} - bz) - \frac{4}{a^2}f(x) - \frac{4}{a^2}f(y) - 4b^2f(z) \end{split}$$

for all $x, y, z \in X$

THEOREM 2.2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 for which there exists a function $\phi: X^3 \to [0, \infty)$ such that

(2.4)
$$\Phi(x, y, z) := \sum_{i=1}^{\infty} \frac{1}{2} \left(\frac{4}{a^2}\right)^j \phi\left(\left(\frac{a}{2}\right)^j x, \left(\frac{a}{2}\right)^j y, \left(\frac{a}{2}\right)^j z\right) < \infty,$$

$$(2.5) ||Df(x, y, z)|| \le \phi(x, y, z)$$

for all $x,y,z\in X$. Then there exists a unique quadratic mapping $Q:X\to Y$ such that DQ(x,y,z)=0 and

(2.6)
$$||Q(x) - f(x)|| \le \frac{a^2}{4} \Phi(x, x, 0)$$

for all $x \in X$.

Proof. Letting x = y and z = 0 in (2.5), we get

$$||f(\frac{2}{a}x) - \frac{4}{a^2}f(x)|| \le \frac{1}{2}\phi(x,x,0)$$

for all $x \in X$. So

$$||f(x) - \frac{4}{a^2} f(\frac{a}{2}x)|| \le \frac{1}{2} \phi(\frac{a}{2}x, \frac{a}{2}x, 0)$$

for all $x \in X$. Hence

$$\|\left(\frac{4}{a^{2}}\right)^{l} f\left(\left(\frac{a}{2}\right)^{l} x\right) - \left(\frac{4}{a^{2}}\right)^{m} f\left(\left(\frac{a}{2}\right)^{m} x\right) \|$$

$$\leq \sum_{j=l+1}^{m} \|\left(\frac{4}{a^{2}}\right)^{j-1} f\left(\left(\frac{a}{2}\right)^{j-1} x\right) - \left(\frac{4}{a^{2}}\right)^{j} f\left(\left(\frac{a}{2}\right)^{j} x\right) \|$$

$$\leq \sum_{j=l+1}^{m} \left(\frac{4}{a^2}\right)^{j-1} \frac{1}{2} \phi\left(\left(\frac{a}{2}\right)^j x, \left(\frac{a}{2}\right)^j x, 0\right)$$

for all $x \in X$. It means that a sequence $\{(\frac{4}{a^2})^n f((\frac{a}{2})^n x)\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{(\frac{4}{a^2})^n f((\frac{a}{2})^n x)\}$ converges. So one can define a mapping $Q: X \to Y$ by $Q(x) := \lim_{n \to \infty} (\frac{4}{a^2})^n f((\frac{a}{2})^n x)$ for all $x \in X$.

By (2.4) and (2.5),

$$(2.7) ||DQ(x,y,z)|| = \lim_{n \to \infty} \left(\frac{4}{a^2}\right)^n ||Df\left(\left(\frac{a}{2}\right)^n x, \left(\frac{a}{2}\right)^n y, \left(\frac{a}{2}\right)^n z\right)||$$

$$(2.8) \leq \lim_{n \to \infty} \left(\frac{4}{a^2}\right)^n \phi\left(\left(\frac{a}{2}\right)^n x, \left(\frac{a}{2}\right)^n y, \left(\frac{a}{2}\right)^n z\right) = 0$$

for all $x, y, z \in X$. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping $Q: X \to Y$ is a quadratic mapping.

Moreover, letting l=0 and passing the limit $m\to\infty$ in (2.7), we get the approximation (2.6) of f by Q.

Now, let $Q': X \longrightarrow Y$ be another quadratic mapping satisfying (2.6). Then we obtain

$$||Q(x) - Q'(x)|| = \left(\frac{4}{a^2}\right)^n ||Q(\left(\frac{a}{2}\right)^n x) - Q(\left(\frac{a}{2}\right)^n x)||$$

$$\leq \left(\frac{4}{a^2}\right)^n \left[||Q(\left(\frac{a}{2}\right)^n x) - f(\left(\frac{a}{2}\right)^n x)|| + ||Q'(\left(\frac{a}{2}\right)^n x) - f(\left(\frac{a}{2}\right)^n x))||\right]$$

$$\leq 2\left(\frac{4}{a^2}\right)^{n-1} \Phi\left(\left(\frac{a}{2}\right)^n x, \left(\frac{a}{2}\right)^n x, 0\right),$$

which tends to zero as $n \to \infty$. So we can conclude that Q(x) = Q'(x) for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \to Y$ is a unique quadratic mapping satisfying (2.6).

COROLLARY 2.3. Let p and θ be positive real numbers with p > 2 and 0 < |a| < 2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.9) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x,y,z\in X$. Then there exists a unique quadratic mapping $Q:X\to Y$ such that

(2.10)
$$||f(x) - Q(x)|| \le \frac{|a|^p \cdot \theta}{4(2^{p-2} - |a|^{p-2})} ||x||^p$$

for all $x \in X$.

Proof. Define $\phi(x,y,z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.2.

COROLLARY 2.4. Let p and θ be positive real numbers with p < 2 and |a| > 2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.11) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x,y,z\in X$. Then there exists a unique quadratic mapping $Q:X\to Y$ such that

(2.12)
$$||f(x) - Q(x)|| \le \frac{|a|^2 \cdot \theta}{2^p (|a|^{2-p} - 2^{2-p})} ||x||^p$$

for all $x \in X$.

Proof. Define $\phi(x,y,z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.2.

THEOREM 2.5. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 for which there exists a function $\phi: X^3 \to [0, \infty)$ such that

$$(2.13) \Phi(x, y, z) := \sum_{j=1}^{\infty} \frac{1}{2} \left(\frac{a^2}{4}\right)^j \phi\left(\left(\frac{2}{a}\right)^{j-1} x, \left(\frac{2}{a}\right)^{j-1} y, \left(\frac{2}{a}\right)^{j-1} z\right) < \infty,$$

$$||Df(x, y, z)|| \le \phi(x, y, z)$$

for all $x,y,z\in X$. Then there exists a unique quadratic mapping $Q:X\to Y$ such that DQ(x,y,z)=0 and

$$(2.15) ||Q(x) - f(x)|| < \Phi(x, x, 0)$$

for all $x \in X$.

Proof. Letting x = y and z = 0 in (2.5), we get

(2.16)
$$||f(\frac{2}{a}x) - \frac{4}{a^2}f(x)|| \le \frac{1}{2}\phi(x, x, 0)$$

for all $x \in X$. So

(2.17)
$$||f(x) - \frac{a^2}{4}f(\frac{2}{a}x)|| \le (\frac{a^2}{4})\frac{1}{2}\phi(x, x, 0)$$

for all $x \in X$.

Hence

(2.18)
$$\| \left(\frac{a^2}{4} \right)^l f\left(\left(\frac{2}{a} \right)^l x \right) - \left(\frac{a^2}{4} \right)^m f\left(\left(\frac{2}{a} \right)^m x \right) \|$$

$$\leq \sum_{j=l+1}^m \left(\frac{a^2}{4} \right)^j \frac{1}{2} \phi\left(\left(\frac{2}{a} \right)^{j-1} x, \left(\frac{2}{a} \right)^{j-1} x, 0 \right)$$

for all $x \in X$. It means that a sequence $\{(\frac{a^2}{4})^n f((\frac{2}{a})^n x)\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\{(\frac{a^2}{4})^n f((\frac{2}{a})^n x)\}$ converges. So one can define a mapping $Q: X \to Y$ by $Q(x) := \lim_{n \to \infty} (\frac{a^2}{4})^n f((\frac{2}{a})^n x)$ for all $x \in X$.

By (2.13) and (2.14),

$$(2.19) \|DQ(x,y,z)\| = \lim_{n \to \infty} \left(\frac{a^2}{4}\right)^n \|Df\left(\left(\frac{2}{a}\right)^n x, \left(\frac{2}{a}\right)^n y, \left(\frac{2}{a}\right)^n z\right)$$

$$(2.20) \qquad \leq \lim_{n \to \infty} \left(\frac{a^2}{4}\right)^n \phi\left(\left(\frac{2}{a}\right)^n x, \left(\frac{2}{a}\right)^n y, \left(\frac{2}{a}\right)^n z\right) = 0$$

for all $x, y, z \in X$. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping $Q: X \to Y$ is a quadratic mapping.

Moreover, letting l=0 and passing the limit $m\to\infty$ in (2.18), we get the approximation (2.15) of f by Q.

Now, let $Q': X \longrightarrow Y$ be another quadratic mapping satisfying (2.15) . Then we obtain

$$||Q(x) - Q'(x)|| = \left(\frac{a^2}{4}\right)^n ||Q(\left(\frac{2}{a}\right)^n x) - Q(\left(\frac{2}{a}\right)^n x)||$$

$$\leq \left(\frac{a^2}{4}\right)^n \left[||Q(\left(\frac{2}{a}\right)^n x) - f(\left(\frac{2}{a}\right)^n x)|| + ||Q'(\left(\frac{2}{a}\right)^n x) - f(\left(\frac{2}{a}\right)^n x))||\right]$$

$$\leq 2\left(\frac{a^2}{4}\right)^n \Phi\left(\left(\frac{2}{a}\right)^n x, \left(\frac{2}{a}\right)^n x, 0\right),$$

which tends to zero as $n \to \infty$. So we can conclude that Q(x) = Q'(x) for all $x \in X$. This proves the uniqueness of Q. Hence the mapping $Q: X \to Y$ is a unique quadratic mapping satisfying (2.15).

COROLLARY 2.6. Let p and θ be positive real numbers with p > 2 and |a| > 2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.21) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$(2.22) ||f(x) - Q(x)|| \le \frac{|a|^p \cdot \theta}{4(|a|^{p-2} - 2^{p-2})} ||x||^p$$

for all $x \in X$.

Proof. Define $\phi(x, y, z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.5.

COROLLARY 2.7. Let p and θ be positive real numbers with p < 2 and |a| < 2. Let $f: X \to Y$ be a mapping satisfying f(0) = 0 and

$$(2.23) ||Df(x,y,z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$. Then there exists a unique Jensen type quadratic-quadratic mapping $Q: X \to Y$ such that

$$(2.24) ||f(x) - Q(x)|| \le \frac{|a|^2 \cdot \theta}{2^p (2^{2-p} - |a|^{2-p})} ||x||^p$$

for all $x \in X$.

Proof. Define $\phi(x,y,z) = \theta(\|x\|^p + \|y\|^p + \|z\|^p)$, and apply Theorem 2.5.

References

- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
- [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [3] F. Skof, Local properties and approximations of operators (Italian), Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129.
- [4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [5] S. Czerwik, On the stability of the mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
- [6] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305–315.
- [7] C. Park, W. Park, On the Jensen's equation in Banach modules, Taiqanese J. Math. 6 (2002), 523–300.

*

Department of Mathematics Chungnam National University Daejeon 305–764, Republic of Korea E-mail: kwjun@math.cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305–764, Republic of Korea *E-mail*: yscho@cnu.ac.kr