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CHARACTERIZATIONS OF GAMMA DISTRIBUTION

MIN-YOUNG LEE* AND EuUN-HYUK Lim**

ABSTRACT. Let X1, ---, X, be nondegenerate and positive independent
identically distributed(i.i.d.) random variables with common absolutely con-
tinuous distribution function F(z) and E(X?) < co. The random variables

X1+ -+ X, and % are independent for 1 < m < n if and only

if X1, -+, Xy, have gamma distribution.

1. Introduction

A random variable X has a gamma distribution with shape parameter A

and scale parameter «, if its p.d.f. is given by

0, x <0,
flwson A) = a’ A lem o, z > 0.

The characteristic function of the distribution is given by

b (ta)) = (1— D)

(07

Here a, A > 0 are two parameters.
Characterizations of the gamma distribution have been extensively stud-
ied in the literature. Lukacs(1955) obtained the following nice characteriza-

tion of the gamma distribution that if random variables X, Y are indepen-

dent non-degenerate and positive then the random variables % and X +Y

are independent if and only if X and Y have gamma distributions. This

result has been the starting point of numerous investigations. Kotz(1974)
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shows a good review of the gamma distribution including general prperties
and characterizations. Recently, Ghitany, El-saidi and Khalil(1995) obtain
a characterization of gamma distribution for a general class of life-testing
models based on relationship between conditional expectation and the fail-
ure rate function.

In this paper, we extend the theorem of Lukacs and obtain the following
result that the random variables X + - -+ X,, and 21t 4Xm 4r6 indepen-

X1t Xn
dent for 1 < m < n if and only if X3, ---, X,, have gamma distribution.

2. Main results

THEOREM 1. Let X, Y and Z be nondegenerate and positive i.i.d. ran-

dom variables with common absolutely continuous distribution function

F(z) and E(X?) < oo. The random variables X +Y + Z and %

are independent if and only if X, Y and Z have gamma distribution.

X+Y - . . . . X+Y
X1y 17 s astatistic scale-invariant, X1z and X+Y +Z

are independent for gamma variable[see Lukacs and Laha(1963)]. We have

Proof.  Since

to prove the reverse.

We denote the characteristic functions of X +Y + 7 , % and (X +

Y+ 2, XXHJ;XZ> by ¢1(t), ¢2(s) and ¢(t, s), respectively. The independence

of X 4+Y + Z and Xﬁ;ﬁ — 1s equivalent to

(1) o(t,s) = ¢1(t) - Pa(s).

The left hand side of (1) becomes

gb(t,s):/Om/ooo/oooexp{it(x—{—y—kz)

is(z +vy)
P }dF(a:)dF(y)dF(z).
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Also the right hand side of (1) becomes

/ / / exp{it(x + y + 2) }dF (z)dF (y)dF(2)

/ / / {;S+xy++y) }dF(w)dF(y)dF(z).
Then (1) gives

/Om/om/omexp{it(az+y+z)

is(x +y)
r+y+z

(2)
}dF(:U)dF(y)dF(z)

_ / ” / ” / " explit(z + y + 2)}dF ()dF (y)dF (2)

/ / / {;S+xy++yi}dF(x)dF(y)dF(z),

The integrals in (2) exist not only for reals ¢t and s but also for complex
values t = u + iv,s = u* + w*, where v and u* are reals, for which v =
Im(t) > 0, v* = I'm(s) > 0 and they are analytic for all ¢, s for v = I'm(t) >
0, v* =Im(s) >0, [see Lukacs(1955)].

Differentiating (2) twice, first with respect to ¢ and then respect to s and

setting s = 0, we get

/ N / N / (@4 ) explit(e +y + 2)}dF(@)df (y)dF(2)
(3) 0 0Oo OOO -
= 0/0 /0 /o (x 4+ y + 2)” explit(x + y + 2) }dF (x)dF (y)dF(z),

2
where 0 = E[(X)_i;;iZ) }

The random variable 6 is bounded. Therefore all its moments exist.

Note that

)] ) o] )

for i.i.d. random variables X, Y and Z. Then
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30_E[(X+Y+Z)2+X2+Y2+Z2]

(X +Y +2)2

1

2XY 1Y Z+ZX)
L+ “Xoyegzz

(4)
= E

1+

Note that, forz > 0,y > 0and z > 0,0 < 2(zy+yz+zz) < 2(2?+y2+2?)
and the equality on the right hand side occurs only if x = y = z. By the
assumed continuity of F(x), P(x =y = 2) =0, s0 0 < % < 2,
that is, by (4), § <6 < 2.

Let () be the characteristic function of F(z). Then

o' (t) = i/ooo xexp [itz] dF (x)

and
©"(t) = _/0 x? exp [itz] dF (x).

We can express (3) as a differential equation for the characteristic function

©(t) and get

20" (1)(p(1))? + 2(¢ (1) *0(t) = 030" (1) (0(1))* + 6(¢ (1)) *(1) }-

That is,

" N ’
S 6029 4, 2
©'(t) 2—30 ¢(t) 9 3
After integrating with the initial conditions ¢(0) = 1, ¢'(0) = iE(X), we
get
-2 60 —2
(5) ¢(1) = iB(X)(p(0) 550, 7 > 1.

The solution of this differential equation (5) with the above initial conditions

is

B iB(X) \ 230

Therefore F'(x) is a gamma distribution.
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THEOREM 2. Let X;, ---, X,, be nondegenerate and positive i.i.d. ran-
dom variables with common absolutely continuous distribution function
F(x) and E(X?) < co. The random variables X1 + - - -+ X,, and %
are independent for 1 < m < n if and only if Xy, ---, X,, have gamma
distribution.

Proof.  Since % is a statistic scale-invariant, % and X1+

-+ + X, are independent for gamma variable [see Lukacs and Laha(1963)].
We have to prove the converse.

We denote the characteristic funtions of X7 +---+ X, , H and

<X1 +- 4+ X, m> by ¢1(t), ¢2(s) and ¢(t, s), respectively. The
independence of X; + --- + X, and % is equivalent to
(6) o(t,s) = ¢1(t) - da(s).

The left hand side of (6) becomes

o(t, s) / / exp[ztx1+ ot X))

is(ar + - JrUM)}CZF(HM) dF (zn).
1+ -+ T,

Also the right hand side of (6 becomes

o1 (t / / exp [zt (w1 + - —l—a:n)}dF(g;l) CdF ()
/ / [zs r1+ - +xnl):|dF<(1j1)...dF(xn)'

r1+ -+ T,

Then (6) gives

7) o -
/0 /0 exp[it(x1+"‘+$n)

is(xr1+ -+ Tm)
R

:/Ooo.../ooexp [it(wl-f— +xn)]dF(x1)---dF($n)

/ / {Zs;?: :xim)]dF(Il)“-dF(:pn)-

]dF(xl) o dF ()
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The integrals in (7) exist not only for reals ¢ and s but also for complex values
t =u+iv,s =u* +iv*, where u and u* are reals, for which v = I'm(t) > 0,
v* = Im(s) > 0 and they are analytic for all ¢, s for v = Im(t) > 0,
v* =Im(s) >0, [see Lukacs(1955)].

Differentiating (7) twice, first with respect to ¢ and then respect to s and

setting s = 0, we get

/Ooo » /Ow(xl bt )2 explit(as 4+ 2n) A (21) - -+ dF ()

(8) :9/000.../()00($1+...+$n)2
cexp{it(z1 + - + @) }dF (21) - - - dF (),

2
where 9 =F m
The random variable 8 is bounded. Therefore all its moments exist. By
the property of expectation and the same way of proof of Theoreml, we can

compute that Note that

nCm =FE

O Yk Xi 4 P2 B iy XX
(X k=1 Xk)?

9 - B |:n—2Cm—2 : (Z::l Xk)2 ) Cm—l ’ ZZ:l Xk:2:|
®) (et X0)?

_ 1

=E n-20n-—2+n-2Cpn-1- 14 22 Yicicjan XiXj

Yh=1 Xi

Note that, for z1,- -+, 2, > 0,0 <232, o, Tiw; < (n— D(z2+---+22)
and the equality on the right hand side occurs only if xy = --- = x,,. By the
assumed continuity of F(z), P(x; =+ =x,) =0,500 < 2l igicin 2i%

ai+tal
2
n — 1, that is, by (9), <’;’Z> <0<

Let ¢(t) be the characteristic function of F(x). Then

o' (t) = z'/ooo x explitz]dF (z)
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and
" (t) = —/0 x? explitz]dF (z).

We can express (8) as a differential equation for the characteristic function
(t) and get
(m)@" () (o))" + 2 mCal¢' (1)) (p(8))" 2
= 0{ny" ()(@(®)" ™" +2 nCal¢' ()% (0(1))" "}
That is,

P"(t) 20,020 — (o) P'(H)  (m)® m
= , — ] <0< —.
¢'(t) m—nf  p(t) n
After integrating with the initial conditions ¢(0) = 1, ¢'(0) = iE(X), we
get

nn-10-mm-1 n(n—1)0 —m(m — 1)

(10) () = iB(X)(p(t) ", > 1.

m — nf
The solution of this differential equation (10) with the above initial condi-

tions is N
() = (1_ZE<AX>t> o= mend

Therefore F(z) is a gamma distribution.
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