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ZERO-KNOWLEDGE GROUP IDENTIFICATION AND
HIDDEN GROUP SIGNATURE FOR SMART CARDS

USING BILINEAR PAIRINGS

Young Whan Lee* and Byung Mun Choi**

Abstract. In this paper, we propose a new blind group identifi-
cation protocol and a hidden group signature protocol as its appli-
cation. These protocols involve many provers and one verifier such
that (1) the statement of all the provers are proved simultaneously,
(2) and also all the provers using computationally limited devices
(e.g. smart cards) have no need of computing the bilinear pairings,
(3) but only the verifier uses the bilinear pairings. A. Saxena et al.
proposed a two-round blind (group) identification protocol in 2005
using the bilinear pairings. But it reveals weakness in the active-
intruder attack, and all the provers as well as the verifier must have
devices computing bilinear pairings.

Comparing their results, our protocol is secure from the active-
intruder attack and has more fit for smart cards. In particular, it is
secure under only the assumption of the hardness of the Discrete-
Logarithm Problem in bilinear groups.

1. Introduction

A zero-knowledge blind group identification scheme enables a group
of users to identify themselves to a server such that (a) if all users are
honest the server always accepts and (b) if any users are dishonest the
server always rejects. However, in this case it is impossible to find out
the actual identity of the particular cheating users.

For example, Alice and Bob want to identity themselves jointly to
a server, and they don’t trust each other to individually login to the
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server without the other’s approval. Alice wants to ensure that the
identification succeeds if and only if the other user is really Bob. Bob
has a similar requirement.

A. Saxena, B. Soh and S. Priymat [13] proposed a two-round blind
(group) identification using bilinear pairings. But their protocol has
a weakness of the active-intruder attack. Also in their protocol all the
provers as well as the verifier need to compute bilinear pairings with some
devices. But pairing implementation attempts in limited devices such
as smart cards reveal that the embedded code may be slow, resource-
consuming and tricky to program, although pairing is a cubic-time im-
plementation [5].

To improve these two weaknesses, we propose a new zero-knowledge
blind (group) identification protocol for smart cards. First, the bilinear
pairings will be used only to verifier but not to the prover in our protocols
for identifications and signatures. Secondly, our protocol is strong under
the active-intruder attack and is secure assuming the hardness of the
Discrete-Logarithm problem in bilinear groups. Also when a group of
the provers identifies jointly to the server, they also send plain text
messages with hidden signatures such that only the server can extract
the signature.

The organization of paper is as follows. In Section 2, we present the
preliminaries of bilinear parings and background, and give an example
of the active-intruder attack on Saxena et al.’s blind group identification
scheme. In Section 3 we propose our new two-round group identification
and then in Section 4 we prove the security of the proposed protocol.
In Section 5 we derive the hidden signature from our scheme. Finally, a
conclusion is given in Section 6.

2. Bilinear pairings and background

2.1. Bilinear pairings

The cryptology using pairings is based on the existence of efficiently
computable non-degenerate bilinear maps (or pairings) which can be
abstractly described as follows. Let G1 be an additive cyclic group of
the prime order q and G2 be the multiplicative cyclic group of the same
order. Practically we think of G1 as a group of points on an elliptical
curve on Z∗q , and G2 as a subgroup of the multiplicative group of a
finite field Z∗

qk for some k ∈ Z∗q . Let P be a generator of G1. A map
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ê : G1 × G1 → G2 is called bilinear pairing if êsatisfies the following
properties:

1. Bilinearity : For all P, Q ∈ G1 and a, b ∈ Z∗q , ê(aP, bQ) = ê(P,Q)ab

2. No-degeneracy : P 6= 0 ⇒ ê(P, P ) 6= 1
3. Computability : There is an efficient algorithm to compute ê(P, Q)

for all P, Q ∈ G1

Note that modified Weil pairing and Tate pairing are examples of bi-
linear pairings [3]. Without going into the details of generating suitable
curves, we may assume that q ≈ 2171 so that the fastest algorithms for
computing discrete logarithms in G1 take about 285 iterations [12]. We
define the following problems in G1.

1. Discrete-Logarithm Problem (DLP) : Given P, Q ∈ G1 , find an
integer a ∈ Z∗q such that aP = Q .

2. Diffie-Hellman Problem (DHP) : Given P, xP, rxP ∈ G1 for un-
knowns x, r ∈ Z∗q , compute rP ∈ G1.

2.2. Background

In this section, we introduce a two-round identification scheme using
a public key cryptosystem, which proposed by A. Saxena, B. Soh and
S. Priymak [13]. Assume that {A1, A2, · · · , An} are the set of users who
want to jointly identify themselves. It is necessary that each user Ai

must have a certified public key Yi = xiPi where Pi ∈ G1. The goal of
the protocol is that all users will simultaneously identify themselves to
the server S.

1. The SSP (A. Saxena, B. Soh and S. Priymak [13]) Blind Group
Identification Scheme
(1) The n provers A1, A2, · · · , An start by claiming to the server
S that they know the discrete logarithms x1, x2, · · · , xn ∈ Z∗q of
A1, A2, · · · , An ∈ G1 (to base P ) respectively.
(2) The verifier S generates r1, r2, · · · , rn ∈ Z∗q uniformly at ran-
dom and compute Ri = riYi and Ui = r2

i Pi. It makes the list of
challenges < Ai, Ri, Ui > public.
(3) Each Ai computes Vi = 1

xi
Ri and checks that ê(Vi, Vi) =

ê(Ui, P ) ; if the test passes, it generates Qi ∈ G1 and computes
Zi = Vi + xiQi.
(4) All users then collaborate to jointly compute the value Z =∑i=n

i=1 Zi. This computation is hidden from S so that individual
values Zi are effectively kept secret from its view. The combined
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proof < Z, Q1, Q2, · · · , Qn > is sent to S.
(5) S accepts if ê(Z −∑i=n

i=1 riP, P ) =
∏i=n

i=1 ê(Qi, Yi)

2. Active-intruder Attack on SSP Blind Group Identification Scheme
Informally, an active adversary is the one who alters, injects, drops
and/or diverts messages between the prover and the verifier. Note
that there are three approaches to handle this definitional issue [1,
6, 15, 16]. D. R. Stinson, J. Wu defined a successful active-intruder
attack as follow: In an active-intruder attack, the adversary is
successful if the (honest) verifier accepts in a session after the
adversary becomes active in the same session [16].

We give an example of active-intruder attack on SSP blind
group identification scheme as follow: We use simple figures and
notations to illustrate the SSP blind group identification protocol
and corresponding active-intruder attacks on it. Let ri be a ran-
dom number chosen by the server S, xi a random number chosen
by provers Ai(i = 1, 2, · · · , n), and O any attacker. All computa-
tions take place in a relevant group.

SSP blind group identification scheme:
Note that xi is secret key and xiPi is public key for each Ai(i = 1, 2, · · · , n)

A1
<R1=r1x1P,U1=r2

1P>←−−−−−−−−−−−−−B

Ai
<Ri=rixiP,Ui=r2

i P>←−−−−−−−−−−−−B

...
An

<Rn=rnxnP,Un=r2
nP>←−−−−−−−−−−−−−−B

{A1, A2, · · · , An}<Z=
∑i=n

i=1 Zi,Q1,Q2,··· ,Qn>−−−−−−−−−−−−−−−−−→S

Ai verifies that ê( 1
xi

Ri,
1
xi

Ri) = ê(Ui, P ). If the test passes, it generates
Qi ∈ G1 and computes Zi = Vi + xiQi, where Vi = 1

xi
Ri.

Also S verifies that ê(Z −∑i=n
i=1 riP, P ) =

∏i=n
i=1 ê(Qi, Yi) and accepts.

Attack : The active-intruder attack is possible as follows :

A1
<2R1=2r1x1P,4U1=4r2

1P>←−−−−−−−−−−−−−−−−O<R1=r1x1P,U1=r2
1P>←−−−−−−−−−−−−−B

A2
<2R2=2r2x2P,4U2=4r2

2P>←−−−−−−−−−−−−−−−−O<R2=r2x2P,U2=r2
2P>←−−−−−−−−−−−−−B

...
An

<2Rn=2rnxnP,4Un=4r2
nP>←−−−−−−−−−−−−−−−−O<Rn=rnxnP,Un=r2

nP>←−−−−−−−−−−−−−−B
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{A1, A2, · · · , An}<Z=
∑i=n

i=1 Zi,Q1,Q2,··· ,Qn>−−−−−−−−−−−−−−−−−→O< 1
2
Z, 1

2
Q1, 1

2
Q2,··· , 1

2
Qn>

−−−−−−−−−−−−−−→S

Ai verifies that

ê(
1
xi

2Ri,
1
xi

2Ri) = ê(2riP, 2riP ) = ê(P, P )4r2
i = ê(4r2

i P, P ) = ê(4Ui, P ).

If the test passes, it generates Qi ∈ G1 and computes zi = Vi + xiQi,
where Vi = 1

xi
Ri. S verifies that

ê(
1
2
Z −

i=n∑

i=1

riP, P ) =
i=n∏

i=1

ê(Qi, P )
xi
2 =

i=n∏

i=1

ê(
1
2
Qi, Yi) = ê(

1
2
Qi, xP )

and accepts.

2.3. Our contribution

In this paper, we propose a new blind group identification protocol for
smart cards using a public key cryptosystem. Our protocol has several
advantages.

1. Every prover with computationally limited device such as smart
cards does not use bilinear pairings and only the server uses them.

2. Our protocol is secure assuming only the hardness of the Discrete-
Logarithm Problem in bilinear groups. Note that the SSP blind
group identification scheme and the SW (D. R. Stinson and J.
Wu) identification scheme need another assumption such as the
hardness of the DHP, EDHP or LDHP [13, 16].

3. The SSP blind group identification scheme has a weakness of the
active-intruder attack, but our scheme does not.

4. Our protocol devices the hidden group signature.

3. Our new blind identification

3.1. Setup PKI(Public Key Infrastructure)

We assume the existence of a trusted authority, denoted by TA, who
will issue certificates for all potential participants in the scheme. The
initial setup for our scheme as follows:

Protocol 3.1: Group identification scheme setup

Input: Security parameter k ∈ Z+ .
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1. The TA generates a prime q, two groups G1, G2 of order q and an
admissible bilinear map ê : G1 ×G1 → G2.

2. The TA chooses a random generator P ∈ G1, a random s ∈ Z∗q
and sets Ppub = sP .

3. The TA publishes a hash function h : G2 → {0, 1}k.
4. The TA computes C such that C = ê(P, P ), and publishes the

system parameters < q, G1, G2, P, Ppub, ê, C, h >.
5. Each potential prover Ai chooses a private key xi uniformly from

Z∗q at random, computes xiP and registers xiP as Ai’s public key
for each i = 1, 2, · · · , n.

3.2. Group identification protocol description

This scheme enables a group of provers (users) to identify themselves
to a verifier (server) such that: (a) The identification test passes if none
of the provers cheat, (b) if any of the provers cheat, the test will fail with
a high prob-ability, (c) it is not possible for the verifier or the provers
to know who cheat. The steps in a session of our scheme as follows:

Protocol 3.2: A group identification scheme

Let {A1, A2, · · · , An} be the set of provers who want to identify them-
selves. It is necessary that each prover Ai must have a certified public
key Yi = xiP as Protocol 3.1. The goal of the scheme is that all provers
will simultaneously identify themselves to a verifier S. That is, the
proof is valid only on all the statements together: ”Ai knows xi” for
all i = 1, 2, · · · , n but not on any of the individual statements like ”A1

knows x1” or ”A2 knows x2” independently of the others. We will as-
sume the infrastructure of Protocol 3.1. The identification is done as
follows:

1. The verifier S chooses r1, r2 · · · , rn ∈ Z∗q uniformly at random, and
computes Vi = ê(rixiP, xiP ) = Crix

2
i , Wi = ê(riP, xiP ) = Crixi

and h(Vi). Then S sends < h(Vi),Wi > to the prover Ai for each
i = 1, 2, · · · , n.

2. After receiving < h(Vi),Wi >, Ai rejects and stops if h(Vi) 6=
h(W xi

i ), or Wi /∈ G2; otherwise Ai chooses zi ∈ Zq, and compute

Xi = W
1
xi

i Cx3
i zi and Ti = V xizi

i = W
x2

i zi

i for each i = 1, 2, · · · , n.
All provers then collaborate to jointly compute the value X =∏i=n

i=1 Xi. This computation is hidden from S so that individual
values < Xi, Ti > are effectively kept secret from its view. The
combined proof < X, T1, T2, · · · , Tn > is sent to S.
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3. After receiving < X, T1, T2, · · · , Tn >, S accepts if X =
∏i=n

i=1 CriT
1
ri ,

otherwise S rejects.

3.3. Completeness of Protocol 3.2

It is straightforward to prove that Protocol 3.2 is complete. Suppose
{A1, A2, · · · , An} and S are all honest. After receiving the challenge
< h(Vi),Wi > for each i = 1, 2, · · · , n, Ai checks to see if h(Vi) =
h(W xi

i ). Since Vi = Crix
2
i = (Crixi)xi = W xi

i for each i = 1, 2, · · · , n, Ai

accepts and all provers Ai then collaborate to jointly compute the value
X =

∏i=n
i=1 Xi. The combined proof < X, T1, T2, · · · , Tn > is sent to S.

Then S checks to see if X =
∏i=n

i=1 CriT
1
ri

i . Since

X =
i=n∏

i=1

Xi =
i=n∏

i=1

Wi
1
xi

Cx3
i zi =

i=n∏

i=1

Cri(Crix
3
i zi)

1
ri =

i=n∏

i=1

CriT
1
ri ,

S also accepts.

4. Security of the proposed group identification protocol

In this section, we prove that the above protocol is perfect zero-
knowledge using the restricted definition of Bounded-prover perfect Zero-
knowledge (BP-pZK)[3], which essentially requires that the probability
of the dishonest verifier succeeding is negligibly less than that of a dis-
honest prover succeeding.

4.1. Soundness

Assuming an honest verifier, we must show that a dishonest prover
cannot succeed except with a negligible probability. Given xiP , h(Vi),
Wi for each i = 1, 2, · · · , n, the task of a dishonest prover is to compute
a pair < Xi, Ti > such that Xi = CriT

1
ri . We show that this is an

instance of the DLP in Theorem 1. The knowledge of Wi and h(Vi) does
not give a dishonest prover any additional advantage in solving this DLP
instance because deciding if h(Vi) ≡ h(W xi

i ) is an instance of the DLP
as Theorem 3. Thus, the proof is sound from a verifier’s view as long as
the DLP is intractable.

Theorem 4.1. Assume that the DLP is hard. Then it is hard for
the dishonest prover to construct a pair < Xi, Ti > without knowledge

of xi for some i(1 ≤ i ≤ n) such that X =
∏i=n

i=1 Xi =
∏i=n

i=1 CriT
1
ri

i .
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Proof. The dishonest knows

P, xiP, Cxi = ê(P, xiP ), Cx2
i = ê(xiP, xiP ),Wi = Crixi , h(Vi)

for each i = 1, 2, · · ·n and he does not know ri and xi in Z∗q for each

i = 1, 2, · · ·n. Thus we may assume that Xi = (Crixi)
1
x′

i (Crixi)x′2i zi

and Ti = (Crixi)x′2i zi for some x′i, zi ∈ Z∗q , and Xj = Crj+x3
jzj and

Tj = Crj+x3
jzj for all j 6= i. If X =

∏i=n
i=1 Xi =

∏i=n
i=1 CriT

1
ri

i , then we

have C
ri·xi

1
x′

i
+rixix

′2
i zi

= Cri+rixix
′2
i zi . Let fP : G1 × G1 → G2 be the

one-to-one mapping given by fP (Q) = ê(Q,P ) [3]. Then we have

Crixi = Crix
′
i ⇔ ê(rixiP, P ) = ê(rix

′
iP, P )

⇔ fP (rixiP ) = fP (rix
′
iP ) ⇔ rixiP = rix

′
iP.

That is, rixiP = rix
′
iP . Let R = riP and Q = rixiP . Thus we know

that to construct a pair < Xi, Ti > with X =
∏i=n

i=1 Xi =
∏i=n

i=1 CriT
1
ri

i
for unknowns ri, xi ∈ Z∗q is to construct x′i satisfying x′iR = Q for
the known R, Q ∈ G1. This is the Discrete-Logarithm Problem and
thus it is hard for a dishonest prover to construct < Xi, Ti > with

X =
∏i=n

i=1 Xi =
∏i=n

i=1 CriT
1
ri

i .

4.2. Honest verifier zero-knowledge

The transcript consists of the messages exchanged between the two
parties. In Theorem 2, we construct a simulator that can generate
an accepting transcript {h(Vi),Wi, Xi, Ti, X} without interaction with
a prover and then show that the simulated and real distributions are
identical. Thus our protocol is perfect zero-knowledge for an honest
verifier.

Theorem 4.2. Protocol 3.2 is perfect zero-knowledge for an honest
verifier.

Proof. The set = of real transcripts obtained by provers and an honest
verifier consists of all transcripts = having the following form:

= =< h(Vi),Wi, Xi, Ti.X >

=< h(Crix
2
i ), Crixi , Cri+x3

i zi , Crx3zi ,
i=n∑

i=1

Xi > .

Note that ri is chosen by the verifier uniformly at random from Z∗q
and also zi is chosen by the prover uniformly at random from Z∗q .
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The set = of simulated transcripts can be constructed by the verifier as
follows. The verifier chooses ri and αi uniformly at random from Z∗q
and using h(ê(rixiP, xiP )), ê(riP, xiP ), ê((ri + αi)P, P ), ê(riαiP, P ) and∏i=n

i=1 ê((riαi)P, P ) computes the simulated transcript

=̂ = {h(Crix
2
i ), Crixi , Cri+αi , Criαi ,

i=n∏

i=1

Cri+αi}.

Since the random numbers ri, zi and αi in Z∗q have identical probability
distributions, = and =̂ have identical probability distributions. There-
fore the protocol is perfect zero-knowledge for an honest verifier.

4.3. Dishonest verifier zero-knowledge

A dishonest verifier will generate < Vi,Wi > with h(Vi) = h(W xi
i )

non-uniformly for some i(1 ≤ i ≤ n). In order words, a dishonest verifier
will not know ri corresponding to Vi for some i(1 ≤ i ≤ n). To prove
Zero-knowledge in this case, it is enough to prove that the probability
of a dishonest verifier succeeding is the probability solving the Discrete-
Logarithm Problem.

Theorem 4.3. Assume that the DLP is hard and h(·) is random
oracle. Then it is hard for a dishonest verifier to construct Wi such that
h(Vi) = h(W xi

i ) for given Vi, P, xiP (i ∈ {1, 2, · · · , n}).
Proof. To construct Wi, a dishonest verifier must find r′i such that

Cr′ix
2
i = Crix

2
i for unknowns ri, xi ∈ Z∗q . Let fxiP : G1×G1 → G2 be the

one-to-one mapping given by fxiP (Q) = ê(Q, xiP ) [3]. Then we have

Cr′ix
2
i = Crix

2
i ⇔ ê(r′ix

2
i P, P ) = ê(rix

2
i P, P )

⇔ fxiP (r′ixiP ) = fxiP (rixiP ) ⇔ r′ixiP = rixiP.

Thus to construct Wi is equivalent that given P, xiP = Q, rixiP = R
and unknowns ri, xi ∈ Z∗q a dishonest verifier compute r′i such that
r′iQ = R. This is the Discrete-Logarithm Problem and so it is hard.

4.4. Passive adversary blindness

An inherent property of our protocol is passive adversary blindness
which informally implies that no polynomially bounded adversary has
a non-negligible advantage in deciding the honesty of the participants
in the protocol. Assuming that the DLP is intractable, it is impossible
for a passive adversary to decide the honesty of the verifier: for any i =
1, 2, · · · , n and given P, xiP, Cxi , Cx2

i ,Wi, h(Vi), deciding if Vi = W xi
i is
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an instance of the DLP. Similarly it is impossible for a passive adversary
to decide the honesty of the prover: given P, xiP, Cxi , Cx2

i ,Wi, h(Vi)Xi, Ti,

for any i = 1, 2, · · · , n, deciding if X =
∏i=n

i=1 Xi =
∏i=n

i=1 CriT
1
ri

i is an
instance of the DLP.

4.5. Knowledge extractor

Let Li = {< Xi, Ti > |Xi = CriT
1
ri

i } for any i = 1, 2, · · · , n. Then
a prover Ai essentially proves knowledge of the witness < Xi, Ti >∈ Li

using the shared string < P, xiP,Cxi , Cx2
i , Crixi , h(Crix

2
i ) > for all i =

1, 2, · · · , n. Clearly Li ∈ NP for all i = 1, 2, · · · , n.
Assume that a dishonest prover A∗i is able to make any verifier ac-

cept. That is, given < P, xiP, Cxi , Cx2
i , Crixi , h(Crix

2
i ) >, A∗i can always

output a pair < X ′
i, T

′
i > such that X ′ =

∏i=n
i=1 X ′

i =
∏i=n

i=1 CriT
′ 1
ri

i . By
simulating the honest verifier itself, A∗ can obtain < X ′

i, T
′
i >, the wit-

ness that < X ′
i, T

′
i >∈ Li for each i = 1, 2, · · · , n. Thus our protocol is

a ”proof of knowledge”

5. Hidden group signatures

In this section we provide a hidden group signature scheme. All
users {A1, A2, · · · , An} can also jointly send plain text message along
with hidden group signature such that S can extract the signature.

Protocol 5.1: Hidden group signature scheme

1. Initialization : S asks Ai for all i = 1, 2, · · · , n to identify itself by
sending the challenge < h(Vi),Wi > in the first step of Protocol
3.2.

2. Signing : Let M ∈ G1 be the message to be signed and H(M) = w,
where H : G1 → Z∗q is a hash function. For each i = 1, 2, · · · , n,
Ai computes W xi

i and check that h(Vi) = h(W xi
i ). And then

Ai choose zi ∈ Z∗q randomly and compute Xi = W
w
xi

i Cziwx3
i and

Ti = W
x2

i zi

i for all i = 1, 2, · · · , n.
3. All provers then collaborate to jointly compute the value X =∏i=n

i=1 Xi. This computation is hidden from S so that individual
values < Xi, Ti > are effectively kept secret from its view. The
combined proof << X, T1, T2, · · · , Tn >, M > is sent to S.
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4. Verification : After receiving << X, T1, T2, · · · , Tn >,M >, S

extracts the signature Sig(M) =
∏i=n

i=1 CriT
1
ri

i . The verification
condition is X = Sig(M)w.

6. Conclusion

In this paper, we proposed a new zero-knowledge blind group iden-
tification protocol for smart cards. Only with the DLP assumption, it
is secure in random oracle model. Also in our protocol the only verifier
uses bilinear pairings but not the provers. Thus smart cards with our
scheme need not have devices for bilinear pairings. Under the methods
of security proof given by Stinson and Wu [16], our protocol is secure
against the active-intruder attacks but Saxena et al.’ scheme [13] has a
weakness of them.
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