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COEFFICIENTS OF UNIVALENT HARMONIC MAPPINGS

Sook Heui Jun*

Abstract. In this paper, we obtain some coefficient bounds of harmonic
univalent mappings by using properties of the analytic univalent function on
∆ = {z : |z| > 1}.

1. Introduction

Let Σ be the class of all complex-valued, harmonic, orientation-preserving,

univalent mappings, which are normalized at infinity by f(∞) = ∞,

(1.1) f(z) = h(z) + g(z) + Alog|z|

of ∆ = {z : |z| > 1}, where

h(z) = z +
∞∑

k=1

akz−k and g(z) =
∞∑

k=1

bkz−k

are analytic in ∆ and A ∈ C. The mapping f can be viewed as a solu-

tion of the partial differential equation fz̄ = afz where the function a is

analytic in ∆ and satisfies |a(z)| < 1.[3]

The coefficient problem for this class appears to be difficult. In the full

class Σ, a few estimates are known only for lower order coefficients: |A| ≤ 2

and |b1| ≤ 1 hold for the full class Σ, and |b2| ≤ 1
2 (1 − |b1|2) ≤ 1

2 holds

if A = 0. These coefficient bounds [3] are all sharp and a consequence of

Schwarz’s lemma. If we restrict our attention to some subclass of Σ, we

can obtain good results; for f ∈ Σ with f(∆) = ∆, |1 + b1| ≤ 1, |bn| ≤ 1
n

for n ≥ 2, and |an| ≤ 1
n for all n. These sharp coefficient bounds are
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obtained by Jun[4]. Therefore, in this paper, we shall consider the subclass

ΣR = {f ∈ Σ : f is convex in the real axis} of Σ and get some coefficient

estimates by using properties of the analytic univalent function defined in

∆.

2. Mappings which are convex in the real axis

Definition 2.1. A set D is called convex in the real axis if every line

parallel to the real axis has a connected intersection with D.

Definition 2.2. A mapping f is convex in the real axis if f(∆) is convex

in the real axis.

Before getting into the main subject, we need to mention the area theorem

which is fundamental to the theory of univalent functions. The name of this

theorem comes from the proof.

Theorem 2.3(Area Theorem). ([2]) If H(z) = z +
∑∞

n=0 cnz−n is

analytic and univalent in ∆, then
∑∞

n=1 n|cn|2 ≤ 1.

Let ΣR be the class of all mappings f ∈ Σ which is convex in the real

axis.

Theorem 2.4. If f ∈ ΣR with real A, then h− g is conformal univalent

in ∆.

Proof. Since f is univalent, there exists a mapping z = z(w) such that

f(z(w)) = w and z(f(z)) = z. Thus we have h−g = f−Alog|z|−2Re{g} and

h(z(w))−g(z(w)) = w+φ(w) where φ(w) = −Alog|z(w)|−2Re{g(z(w))} is

a continuous real valued function. Since a(z) = 2zg′(z)+A
2zh′(z)+A satisfies |a(z)| < 1,

we have h′(z) − g′(z) 6= 0 in ∆. Thus the mapping h(z(w)) − g(z(w)) =

w + φ(w) is locally univalent since z(w) is 1-1. If w1 + φ(w1) = w2 + φ(w2)

with w1 6= w2(w1 = u1 + iv1, w2 = u2 + iv2), then v1 = v2 = v and u1 +

φ(u1 + iv) = u2 +φ(u2 + iv). The real valued function ψ(u) = u+φ(u+ iv),

which is defined on some interval I since f is convex in the real axis, is not

strictly monotonic and therefore not locally 1-1. Thus w + φ(w) = h− g is

1-1 and so conformal univalent. ¤
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Sharp coefficient bounds of the analytic univalent function H(z) = z +∑∞
n=0 cnz−n in ∆ are known only for 1 ≤ n ≤ 3: |c1| ≤ 1 [2], |c2| ≤ 2

3 [5],

|c3| ≤ 1
2 + e−6 [1]. From these, we can easily get the lower order coefficient

bounds for the harmonic univalent mapping f ∈ ΣR with real A as follows;

|a1 − b1| ≤ 1, |a2 − b2| ≤ 2
3
, |a3 − b3| ≤ 1

2
+ e−6.

In the following Corollary 2.5, we obtain the coefficient bounds for all

orders.

Corollary 2.5. If f ∈ ΣR with real A, then

∞∑
n=1

n|an − bn|2 ≤ 1 and |an − bn| ≤ 1√
n

.

Proof. f ∈ ΣR with real A implies that h− g = z +
∑∞

k=1(ak − bk)z−k is

a univalent analytic function in ∆. Thus we get |a1 − b1| ≤ 1 from [2] and∑∞
n=1 n|an−bn|2 ≤ 1 from the area theorem. n|an−bn|2 ≤ 1−|a1−b1|2 ≤ 1

for n ≥ 2 and so |an − bn| ≤ 1√
n
. ¤

Corollary 2.6. If f ∈ ΣR with real A and Re{a1 − b1} ≤ nt2−1
nt2+1 for

t > 0, then

Re{t(a1 − b1)− (an − bn)} ≤ t for n ≥ 2.

Proof. In the proof of Corollary 2.5, we know that n|an−bn|2 ≤ 1−|a1−
b1|2 ≤ 1 for n ≥ 2 and so |an − bn| ≤

√
1−|a1−b1|2√

n
. Hence

Re{t(a1 − b1)− (an − bn)} ≤ tRe{a1 − b1}+
1√
n

√
1− |a1 − b1|2

≤ tRe{a1 − b1}+
1√
n

√
1− (Re{a1 − b1})2.

Let x = Re{a1 − b1}, then Re{t(a1 − b1) − (an − bn)} ≤ tx + 1√
n

√
1− x2.

The function G(x) = tx + 1√
n

√
1− x2 is increasing for −1 ≤ x ≤ nt2−1

nt2+1 and

therefore Re{t(a1 − b1)− (an − bn)} ≤ t for n ≥ 2. ¤
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Corollary 2.7. If f ∈ ΣR with real A and Re{a1 − b1} ≤ n3−1
n3+1 , then

Re{n(a1 − b1)− (an − bn)} ≤ n.

Proof. Set t = n in Corollary 2.6. ¤

Corollary 2.8. If f ∈ ΣR with real A, then Re{n(a1−b1)−(an−bn)} ≤
n for all n sufficiently large depending on f .

Proof. Fix f . If Re{a1 − b1} = 1, then an − bn = 0 for all n ≥ 2 by the

area theorem and the result holds for all n ≥ 2. If Re{a1 − b1} < 1, then

Re{a1 − b1} ≤ nn2−1
nn2+1 for all n sufficiently large since (n3 − 1)/(n3 + 1) → 1

as n →∞. In this case the result follows from Corollary 2.6. ¤

A function H is said to be typically real if H(z) is real if, and only if, z

is real.

Theorem 2.9. Let f ∈ ΣR. If A and coefficients are real, then h − g is

typically real in ∆.

Proof. For f(z) = f(z̄) and so f(z) = f(z) if, and only if, z = z̄ because

of the univalence. (h− g)(z) = (h−g)(z) if, and only if, f(z) = f(z). These

imply that (h− g)(z) = (h − g)(z) if, and only if, z = z̄. Thus h − g is

typically real in ∆. ¤

Corollary 2.10. Let f ∈ ΣR. If A and coefficients are real, and h−g 6=
0 for all z ∈ ∆, then

||c1|2 − |c3|| ≤ 5, ||2c1c2| − |c4|| ≤ 6,

||2c1c3 + c2
2 − c3

1| − |c5|| ≤ 7,

||2c2c3 + 2c1c4 − 3c2
1c2| − |c6|| ≤ 8,

where cn = an − bn.

Proof. Let (h − g)(z) = z +
∑∞

n=1 cnz−n, where cn = an − bn. The

function G defined by G(ζ) = {(h− g)(1/ζ)}−1 is analytic in the unit disk
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D = {ζ : |ζ| < 1} since h − g 6= 0 for all z ∈ ∆. G(ζ) = G(ζ) if, and only

if, (h− g)(1/ζ) = (h − g)(1/ζ). (h− g)(1/ζ) = (h − g)(1/ζ) if, and only if,

ζ = ζ̄ since h − g is typically real in ∆. Thus G is analytic and typically

real in the unit disk D. Let G(ζ) = ζ +
∑∞

n=2 snζn, then |sn| ≤ n by the

known coefficient bound for analytic typically real functions in the unit disk

D. Therefore the results are obtained from

G(ζ) = ζ − c1ζ
3 − c2ζ

4 + (c2
1 − c3)ζ5 + (2c1c2 − c4)ζ6

+ (2c1c3 − c5 + c2
2 − c3

1)ζ
7 + (2c2c3 + 2c1c4 − c6 − 3c2

1c2)ζ8 + · · · .

¤

Theorem 2.11. Let f ∈ ΣR with real A. h − g is typically real if and

only if f is typically real.

Proof. The result holds because of Im{f} = Im{h− g}. ¤
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