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SOME STRUCTURES ON A COMPLETE LATTICE

Seung On Lee* and Yong Ho Yon **

Abstract. In this paper, we define
∧

-structure,
∨

-structure to
generalize some lattices, and study the conditions that a lattice
which has

∧
-structure or

∨
-structure to be continuous or algebraic.

1. Preliminaries

A set P equipped with a partial order ‘≤’ is said to be a poset.
For any set X, the set of all finite subsets of X is denoted by FinX.

Definition 1.1. Let P be a poset and D ⊆ P . D is said to be
directed if X has an upper bound in D for every X ∈ FinD.

By the definition of a directed set every directed set is nonempty,
because ∅ ∈ FinD.

A lattice means a bounded lattice in this paper, i. e., a lattice which
has 0 and e.

For terminology not introduced in this paper, we refer to [2, 4].

Lemma 1.2. Let P be a poset. Then P has
∧

S (
∨

S, resp.) for
every S ⊆ P if and only if P is a complete lattice with

∨
S =

∧
Su

(
∧

S =
∨

Sl, resp.), where Su (Sl, resp.) is the set of all upper bounds
(all lower bounds, resp.) of S.

Further discussions of the fundamentals of a lattice can be found in
[1, 3, 5].

Definition 1.3. Let L be a complete lattice. Then we have the
following:

(1) L is called meet-continuous if it satisfies : x∧(
∨

D) =
∨{x∧d | d ∈

D} for all x ∈ L and all directed subset D of L.
(2) L is called a frame if it satisfies : x ∧ (

∨
S) =

∨{x ∧ s | s ∈ S}
for all x ∈ L and all S ⊆ L.
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(3) For x, y ∈ L, x is said to be way below y, denoted by x ¿ y, if for
any directed subset D of L with y ≤ ∨

D, there is d ∈ D with x ≤ d.
If x ¿ x, then x is said to be a compact element of L.
(4) L is said to be continuous if x =

∨ ↓w x for all x ∈ L,
where ↓w x = {y ∈ L|y ¿ x} .
(5) L is said to be algebraic if x =

∨
(↓ x ∩K(L)) for all x ∈ L,

where ↓ x = {y ∈ L | y ≤ x} and K(L) = {x ∈ L|x ¿ x}.
Definition 1.4. Let P and Q be posets. A map f : P → Q is said

to be

(1) monotone if x ≤ y in P implies f(x) ≤ f(y) in Q;
(2) order-embedding if x ≤ y in P if and only if f(x) ≤ f(y) in Q;
(3) order-isomorphism if it is an order-embedding map P onto Q.

If there exists an order-isomorphism from P to Q, then we say that P
and Q are isomorphic and write P ∼= Q.

If f : P → Q is an order-embedding map, then f is a monotone
1-1 map. But the converse need not be true. For P = {0, a, b, e} with
0 < a < e, 0 < b < e and a‖b (i.e., a and b are non-comparable) and
Q = {0, x, y, e} with 0 < x < y < e, a map f : P → Q defined by:
f(0) = 0, f(a) = x, f(b) = y, f(e) = e, is monotone and 1-1, but not
order-embedding, because f(a) ≤ f(b) but a‖b.

Definition 1.5. Let (P,≤P ) and (Q,≤Q) be posets. We say that a
pair (f, g) of maps f : P → Q and g : Q → P is an adjunction (or Galois
connection), denoted by f a g, between P and Q if

(1) f and g are monotone,
(2) f(p) ≤Q q if and only if p ≤P g(q) for all p ∈ P , q ∈ Q.

If (f, g) is an adjunction, then f is called the left adjoint of g and g is
the right adjoint of f .

Definition 1.6. A map c : P → P is said to be a closure operator
on a poset P if c is a monotone, idempotent self map with 1P ≤ c.

Example 1.7. (1) Let P be a poset. Then c : P → P is a closure
operator on P if and only if (c◦, i) is an adjunction between P and c(P ),
where i : c(P ) → P is the inclusion map and c◦ : P → c(P ) is the
corestriction of c.

(2) Let X = {1, 2, 3} and let P = P(X), where P(X) is the power
set lattice of X. We define a map c : P → P by c(x) = x ∪ {2} for each
x ∈ P . Then c is a closure operator.
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Let L and K be complete lattices. If f : L → K is a map, then we
define two maps f l : K → L and f r : K → L by :

f l(y) =
∧{x ∈ L | y ≤ f(x)} and f r(y) =

∨{x ∈ L | f(x) ≤ y}, for
each y ∈ K.

For any map f : L → K of complete lattices L and K, f l (f r, resp.)
need not be the left adjoint (the right adjoint, resp.) of f .

An order-embedding map on complete lattices preserves neither ar-
bitrary joins (including e) nor arbitrary meets (including 0) in general.

Example 1.8. (1) Let U be the usual topology on the set of all real
numbers R. If i : U → P(R) is the inclusion map, then i is an order-
embedding and preserves the top R and the bottom ∅.

If S = {(1 − 1/n, 1 + 1/n) ∈ U | n ∈ N}, then
∧
U S = int(

⋂
S) =

∅, where int(A) is the interior of A, hence i(
∧
U S) = i(∅) = ∅, but∧

P(R) i(S) =
⋂{(1 − 1/n, 1 + 1/n) | n ∈ N} = {1}. Hence i does not

preserve arbitrary meets. If g : P(R) → U is the map given by g(X) =
int(X) for all X ∈ P(R). Then g preserves arbitrary meets, so g has
the left adjoint i. Hence i preserves arbitrary joins.

The map il : P(R) → U is not the left adjoint of i, because iil({1}) =∧{G ∈ U | {1} ⊆ G} = ∅ and 1P(R)({1}) = {1}, that is, 1P(R) 6≤ iil.
(2) Let V be the vector space R2 over the real numbers R and SubV

a complete lattice of all subspaces of V , and let Vx be the subspaces of
V generated by a vector x. If i : SubV → P(V ) is the inclusion map,
then i is an order-embedding and preserves the top V , but it does not
preserve the bottom, because i({(0, 0)}) = {(0, 0)} 6= ∅.

If i = (1, 0), j = (0, 1), then Vi ∨SubV Vj = R2 since R2 is the smallest
subspace containing Vi and Vj, hence i(Vi) ∨P(V ) i(Vj) = Vi ∪ Vj 6= R2 =
i(R2) = i(Vi ∨SubV Vj). Let g : P(V ) → SubV be the map given by
g(X) = [X] for all X ∈ P(V ), where [X] is the subspace of V generated
by the set X.

Then i is the right adjoint of g, and hence i preserves arbitrary meets.
The map ir : P(V ) → SubV is not the right adjoint of i, because

iir({i})Vi 6≤ {i} = 1P(V )({i}), that is, iir 6≤ 1P(V ).

We remark that the complete lattice SubV of all subspaces of a vector
space V is not a distributive lattice, hence not a frame. In fact, if
i = (1, 0), j = (0, 1) and x = (1, 1) in the above example (2), then
Vx∧(Vi∨Vj) = Vx∧R2 = Vx, and (Vx∧Vi)∨(Vx∧Vj) = {(0, 0)}∨{(0, 0)} =
{(0, 0)}. But SubV is a meet-continuous lattice. So we can conclude that
a meet-continuous lattice need not be distributive.
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Example 1.9. Let P = {0, a, e} be a chain with the partial order :
0 < a < e, and let Q = {0, x, y, e} be a chain with the partial order :
0 < x < y < e.

(1) If f : P → Q is the map defined by : f(0) = 0, f(a) = x, f(e) = e,
then f is order-embedding. If g : Q → P is the map defined by :
g(0) = 0, g(x) = a, g(y) = a, g(e) = e, then g is a left inverse of f , but
(fg)(y) = x < y = 1Q(y), that is, 1Q 6≤ fg. It follows that g is not the
left adjoint of f .

(2) If f : P → Q is the map defined by : f(0) = 0, f(a) = y, f(e) = e,
then f is order-embedding. If g : Q → P is the map defined by :
g(0) = 0, g(x) = a, g(y) = a, g(e) = e, then g is a left inverse of f , but
1Q(x) = x < y = (fg)(x), that is, fg 6≤ 1Q. It follows that g is not the
right adjoint of f

Let P and Q be posets and f : P → Q a monotone map. If D is a
directed subset of P , then f(D) is a directed subset of Q. Thus we have:

Proposition 1.10. Let L and K be complete lattices and f : L → K
an order-embedding map which preserves directed joins.

If f(x) ¿ f(y) in K, then x ¿ y in L.

Proof. Suppose that f(x) ¿ f(y) in K and let D be a directed subset
of L with y ≤ ∨

D. Since f is monotone and preserves directed joins,
f(y) ≤ f(

∨
D) =

∨
f(D) and f(D) is a directed subset of K.

Since f(x) ¿ f(y), there is d ∈ D with f(x) ≤ f(d), and it implies
x ≤ d ∈ D because f is order-embedding. Hence x ¿ y.

Proposition 1.11. Let L and K be complete lattices and f : L → K
a map with f l a f which preserves directed joins. If x ¿ y in K, then
f l(x) ¿ f l(y) in L.

Proof. Suppose that x ¿ y in K and D is a directed subset of L with
f l(y) ≤ ∨

D. Since f l a f and f preserves directed joins, y ≤ f(
∨

D) =∨
f(D) and f(D) is a directed subset of K.
Since x ¿ y, there is d ∈ D with x ≤ f(d), and it implies f l(x) ≤

d ∈ D. Hence f l(x) ¿ f l(y).

The converse of the above proposition is not true in general.

Example 1.12. In Example 1.8-(2), the inclusion map i : SubV →
P(V ) is an order-embedding and il = g a i.

If D is a directed subset of SubV , then
⋃D ∈ SubV , because if

u, v ∈ ⋃D, then there are Du and Dv in SubV with u ∈ Du and v ∈ Dv.
Since D is directed, there is D ∈ D with Du, Dv ⊆ D, hence u, v ∈ D,
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and u + v ∈ D ⊆ ⋃D. And it is clear that αv ∈ ⋃D for all α ∈ F and
all v ∈ ⋃D.

That is, we have
∨

SubV D = [
⋃D] =

⋃D =
∨
P(V )D. Hence i

preserves directed joins. It is clear that Vi ¿ V in SubV . But Vi 6¿ V
in P(V ).

In fact, let A = {{x} ∈ P(V ) | x ∈ V } and let F = {∨F | F ∈
FinA} ⊆ P(V ). Then F is a directed subset of P(V ) with V ≤ ∨F ,
but Vi 6≤ ∨F = ∪F for all F ∈ FinA since ∪F is finite subset of V .

Hence we have that il(Vi) = Vi ¿ V = il(V ) in SubV , but i(Vi) =
Vi 6¿ V = i(V ) in P(V ).

Let L and K be complete lattices and f : L → K an order-embedding
map with f l a f . If f l◦ : f(L) → L is the restriction of f l to f(L), then
f l◦ is an order-embedding since f l◦f = 1L.

Proposition 1.13. Let L and K be complete lattices and f : L → K
an order-embedding map which preserves directed joins with f l a f .
Then y ¿ f◦(x) in f(L) if and only if f l◦(y) ¿ x in L, where f◦ : L →
f(L) is the corestriction of f .

Proof. Let y ¿ f◦(x) in f(L). Then f l◦(y) = f l(y) ¿ x.
Conversely, suppose that f l◦(y) ¿ x in L and D is a directed subset

of f(L) with f◦(x) ≤ ∨
D. Then we have x = 1L(x) = f l◦f◦(x) ≤

f l◦(
∨

D) =
∨

f l◦(D). Since f l◦(y) ¿ x and f l◦(D) is a directed subset
of L, there is d ∈ D with f l◦(y) ≤ f l◦(d). so y ≤ d ∈ D since f l◦ is
order-embedding. Hence y ¿ f◦(x).

2.
∧

-structure and
∨

-structure

Let (P,≤) be a poset and x, y ∈ P . We say that x is covered by y (or
y covers x), denoted by x−< y or y >−x, if x < y and x ≤ z < y implies
z = x.

Let L be a lattice and a ∈ L. a is called an atom if 0 −< a. We
denote the set of all atoms in L by A(L).

A lattice L with atoms is said to be atomistic if x =
∨

(↓ x ∩ A(L))
for all x ∈ L.

The power set lattice P(L) of a complete lattice L is a frame; hence a
meet-continuous lattice, which is atomistic with A(P(L)) = {{x} | x ∈
L}. And the map ↓: L → P(L) (x 7→↓ x) is 1-1 and has the left adjoint∨

: P(L) → L (S 7→ ∨
S), that is, it is 1-1 meet-preserving map.

Hence we can consider a map (or 1-1 meet-preserving map) from L to
an atomistic meet-continuous lattice H.
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Lemma 2.1. Let H be an atomistic meet-continuous lattice. If a ∈
A(H) with a ≤ ∨

D for any directed subset D of H, then there is d ∈ D
with a ≤ d.

Proof. Let D be a directed subset of an atomistic meet-continuous
lattice H and a an atom with a ≤ ∨

D. Then a = a ∧ (
∨

D) =
∨{a ∧

d | d ∈ D}. Since 0 ≤ a∧d ≤ a for all d ∈ D and a is an atom, a∧d = a
or a ∧ d = 0 for each d ∈ D.

If a ∧ d = 0 for all d ∈ D, then a =
∨{a ∧ d | d ∈ D} = 0. It is a

contradiction to a 6= 0. Hence there is d ∈ D with a ∧ d = a, that is,
a ≤ d.

By the above lemma, every atom in an atomistic meet-continuous
lattice H is compact, that is, A(H) ⊆ K(H).

Let L be a complete lattice and H an atomistic complete lattice. If
f : L → H is a map, then we denote Ef (L) = {f l(a) ∈ L | a ∈ A(H)}.

Lemma 2.2. Let L be a complete lattice and H an atomistic complete
lattice.

If f : L → H a map with f l a f , then for any x ∈ L we have the
following :

(1) ↓ x ∩ Ef (L) = f l(↓ f(x) ∩A(H)),
(2) f(x) =

∨
(↓ f(x) ∩A(H)) ≤ ∨

f(↓ x ∩ Ef (L)).

Proof. (1) Let u ∈↓ x∩Ef (L). Then there is a ∈ A(H) with f l(a) =
u ≤ x.

Since f l a f , a ≤ f(x). Hence a ∈↓ f(x) ∩ A(H) and u = f l(a) ∈
f l(↓ f(x) ∩A(H)).

Conversely, let u ∈ f l(↓ f(x) ∩ A(H)). Then there is a ∈ A(H)
with a ≤ f(x) and u = f l(a). Since f l a f , u = f l(a) ≤ x. Hence
u ∈↓ x ∩ Ef (L).

(2) It is clear that f(x) =
∨

(↓ f(x) ∩A(H)) since H is an atomistic
lattice.

We need to show that
∨

(↓ f(x) ∩A(H)) ≤ ∨
f(↓ x ∩ Ef (L)).

Since 1H ≤ ff l and ↓ x∩Ef (L) = f l(↓ f(x)∩A(H)) by (1), we have∨
(↓ f(x) ∩A(H)) ≤ ∨

ff l(↓ f(x) ∩A(H)) =
∨

f(↓ x ∩ Ef (L)).

Proposition 2.3. Let L be a complete lattice, H an atomistic meet-
continuous lattice and f : L → H a map which preserves directed joins
with f l a f .

If x ≤ ∨LF ≤ y for some F ∈ Fin(↓ y ∩ Ef (L)), then x ¿ y in L.
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Proof. Suppose that F ∈ Fin(↓ y ∩ Ef (L)) with x ≤ ∨LF ≤ y and
D is a directed subset of L with y ≤ ∨

D. For each u ∈ F , there
is au ∈ A(H) with f l(au) = u. Since f is monotone which preserves
directed joins with f l a f , au ≤ f(u) ≤ f(y) ≤ f(

∨
L D) =

∨
H f(D).

Since f(D) is directed, there is d ∈ D with au ≤ f(d) .
Choose one element du in {d ∈ D | au ≤ f(d)} and let S = {du ∈

D | u ∈ F} for each u ∈ F . Since au ≤ f(du) for all du ∈ S and f l a f ,
u = f l(au) ≤ du for each u ∈ F . so x ≤ ∨F = ∨S. Since S is a finite
subset of D, there is d ∈ D with du ≤ d for all du ∈ S, so ∨S ≤ d and
x ≤ d ∈ D. Hence x ¿ y.

Proposition 2.4. Let L be a complete lattice, H an atomistic meet-
continuous lattice and f : L → H a map with f l a f . Then f preserves
directed joins if and only if every element of Ef (L) is compact.

Proof. Suppose that f preserves directed joins and u ∈ Ef (L). Let
D be a directed subset of L with u ≤ ∨

D. Then there is a ∈ A(H)
with f l(a) = u. Since f l a f and f preserves directed joins, a ≤
f(u) ≤ f(

∨
L D) =

∨
H f(D). There is d ∈ D with a ≤ f(d). Hence

u = f l(a) ≤ f l(f(d)) ≤ d, so u ¿ u.
Conversely, suppose that u is a compact element for every u ∈ Ef (L)

and D is a directed subset of L. Since f(
∨

L D) ≥ ∨
H f(D), it remain

to show that f(
∨

L D) ≤ ∨
H f(D).

Let α =
∨

L D and a ∈↓ f(α) ∩ A(H). Then a ≤ f(α) implies
f l(a) ≤ α =

∨
L D. Since f l(a) is a compact element in L and D is

directed, there is d ∈ D with f l(a) ≤ d, hence a ≤ f(d) ≤ ∨
H f(D).

That is, a ≤ ∨
H f(D) for every a ∈↓ f(α)∩A(H), so f(

∨
L D) = f(α) =∨

H(↓ f(α) ∩A(H)) ≤ ∨
H f(D).

Definition 2.5. Let L and H be complete lattices. Then
(1) L is said to have a (

∧
, f)-structure in H if there is an 1-1 map

f : L → H which preserves arbitrary meets.
(2) L is said to have a (

∨
, f)-structure in H if there is an 1-1 map

f : L → H which preserves arbitrary joins.

If L has a (
∧

, f)-structure ((
∨

, f)-structure, resp.) in H, then f
is an order-embedding map and preserves the top element (the bottom
element, resp.); f(eL) = f(∧L∅) = ∧Hf(∅) = ∧H∅ = eH . But f need
not preserve arbitrary joins (meets, resp.) as Example 1.8.

Definition 2.6. Let L and H be complete lattices with L ⊆ H and
i : L → H the inclusion map.

(1) L is said to have a
∧

-structure in H if i preserves arbitrary meets,
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(2) L is said to have a
∨

-structure in H if i preserves arbitrary joins.

Let L have a
∧

-structure (
∨

-structure, resp.) in H. Then L has a
(
∧

, i)-structure ((
∨

, i)-structure, resp.) in H since i is 1-1, and
∧

L S =∧
H S (

∨
L S =

∨
H S, resp) for every S ⊆ L, because

∧
L S = i(

∧
L S) =∧

H i(S) =
∧

H S.

Lemma 2.7. If L has a
∧

-structure (
∨

-structure, resp.) in a complete
lattice H, then for any S ⊆ L,

∨
L S ≥ ∨

H S (
∧

L S ≤ ∧
H S, resp.) in

H.

Proof. Let i : L → H be the inclusion map. Then i is monotone,
hence,

∨
L S = i(

∨
L S) ≥ ∨

H i(S) =
∨

H S for any S ⊆ L.
The proof of

∧
L S ≤H

∧
H S for a

∨
-structure is the dual of this

proof.

Let L have a
∧

-structure in H. Then the inclusion map i : L → H
preserves arbitrary meet and il a i. Since x ≤ x in for all x ∈ L,
il(x) =

∧{u ∈ L | x ≤ i(u) = u} = x for all x ∈ L, that is, il◦ = 1L,
where il◦ : L → L is the restriction of il to L.

We denote â = il(a) for each a ∈ A(H), that is, â =
∧{u ∈ L | a ≤ u},

and E(L) = Ei(L) = {â ∈ L | a ∈ A(H)}.
Proposition 2.8. Let L have a

∧
-structure in an atomistic meet-

continuous lattice H. Then
∨

H D ∈ L for every directed subset D of L
if and only if â is compact for every â ∈ E(L).

Proof. Let D be a directed subset of L and
∨

H D ∈ L. Since D ⊆ L,
il(d) = d for all d ∈ D, hence il(D) = D. Since

∨
H D ∈ L and il

preserves arbitrary joins,
∨

H D = il(
∨

H D) =
∨

L il(D) =
∨

L D. Hence
we have i(

∨
L D) =

∨
L D =

∨
H D =

∨
L i(D), that is, i preserves

directed joins, and we have the equivalence of this proposition.

Example 2.9. (1) The complete lattice IdR of all ideals of a ring
R has a

∧
-structure in P(R) and for every directed subset D of IdR,∨

P(R)D = ∪D ∈ IdR. By Proposition 2.8, every principal ideal is com-
pact in IdR.

In the same way, a subspace generated by a singleton set is compact
in the complete lattice SubV of all subspace of a vector space V

(2) Let L = [0, 1] be the complete chain with the usual order. We
consider the adjunction

∨ a ↓, where ↓ : L → P(L)(x 7→↓ x) and
∨

:
P(L) → L(S 7→ ∨

S). ↓l=
∨

, and ↓ is 1-1 and preserves arbitrary meets.
Hence L has the (

∧
, ↓)-structure in P(L).
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The singleton set {1} is an atom in P(L) and 1 = ∨{1} = il({1}) ∈
E↓(L), but 1 is not compact in L, hence ↓ does not preserve directed
joins. In fact, if D = {1− 1/n | n ∈ N}, then D is a directed subset of
L and ↓ (

∨
L D) = ↓ 1 = L, but

∨
P(L){ ↓ (1 − 1/n) | n ∈ N} =

⋃{ ↓
(1− 1/n) | n ∈ N} = [0, 1) 6= L.

Lemma 2.10. Let L have a (
∧

, f)-structure in an atomistic complete
lattice H. Then x =

∨
(↓ x ∩ Ef (L)) for every x ∈ L.

Proof. From the definition of atomistic, f(x) =
∨

(↓ f(x) ∩ A(H))
for all x ∈ L. Since f l a f and f is order-embedding, f l preserves
arbitrary joins and f lf = 1L . Hence we have x = f lf(x) = f l(

∨
(↓

f(x) ∩ A(H))) =
∨

f l(↓ f(x) ∩ A(H)) =
∨

(↓ x ∩ Ef (L)) for every
x ∈ L.

Proposition 2.11. Let L have a (
∧

, f)-structure in an atomistic
meet-continuous lattice H. If x ¿ y in L, then x ≤ ∨LF ≤ y for some
F ∈ Fin(↓ y ∩ Ef (L)).

Proof. Suppose that x ¿ y in L. y =
∨

(↓ y ∩Ef (L)), hence there is
F ∈ Fin(↓ y ∩ Ef (L)) such that x ≤ ∨LF , and we have ∨LF ≤ ∨

L(↓
y ∩ Ef (L)) ≤ y since F ⊆ ↓ y ∩ Ef (L) ⊆ ↓ y.

The converse of the above proposition is not true in general.

Example 2.12. In Example 2.9-(2), A(P(L)) = {{x} | x ∈ L}, and
E↓(L) = {∨{x} | {x} ∈ A(P(L))} = {x | {x} ∈ A(P(L))} = L, hence
we have ↓ 1 ∩ E↓(L) = L ∩ L = L. For F = {1} ∈ Fin(↓ 1 ∩ E↓(L)),
1 ≤ ∨F ≤ 1, but 1 6¿ 1.

Proposition 2.13. Let L have a (
∧

, f)-structure in an atomistic
meet-continuous lattice H. If f preserves directed joins, then the fol-
lowing are equivalent :

(1) x ¿ y in L
(2) x ≤L ∨LF ≤L y for some F ∈ Fin(↓ y ∩ Ef (L)).

Proof. It is clear from Proposition 2.3 and 2.11.

Example 2.14. The complete lattice IdR of a ring has a
∧

-structure
in P(R). For every directed subset D of IdR,

∨
P(R)D =

⋃D ∈ IdR,
and every principal ideal is compact. Hence we have that I ¿ J in IdR
if and only if I ≤ ∨F ≤ J for some F ∈ Fin({(x) | x ∈ R}), where (x)
is the principal ideal of R generated by x ∈ R.

In the same way, let SubV be the complete lattice of all subspaces of
a vector space V . Then U ¿ V in SubV if and only if U ≤ ∨F ≤ V for
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some F ∈ Fin({[v] | v ∈ V }), where [v] is the subspace of V generated
by v ∈ V .

Proposition 2.15. Let L have a (
∧

, f)-structure in an atomistic
meet-continuous lattice H. If f preserves directed joins, then L is con-
tinuous.

Proof. Suppose that f preserves directed joins, and let x ∈ L. Then
for every a ∈↓ f(x) ∩ A(H), a ¿ a ≤ f(x) by , and a ¿ f(x). Hence
↓ f(x) ∩A(H) ⊆↓w f(x), and it implies that ↓ x ∩ Ef (L) = f l(↓ f(x) ∩
A(H)) ⊆ f l(↓w f(x)). Since f l(↓w f(x)) ⊆↓w x, ↓ x∩Ef (L) ⊆↓w x, and
we have x =

∨
(↓ x ∩ Ef (L)) ≤ ∨

(↓w x) ≤ x . Hence x =
∨

(↓w x), and
L is continuous.

Example 2.16. The complete lattices IdR and SubV are continuous.

Proposition 2.17. Let L have a (
∧

, f)-structure in an atomistic
meet-continuous lattice H. If every element of Ef (L) is compact, then
L is algebraic.

Proof. Suppose that every element of Ef (L) is compact. Then Ef (L) ⊆
K(L), and
↓ x ∩ Ef (L) ⊆ ↓ x Thus we have x =

∨
(↓ x ∩K(L)).

The converse of the above proposition is not true. In fact, L in
Example 2.9-(2) is algebraic, but 1 is not compact.
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