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SOME STRUCTURES ON A COMPLETE LATTICE
SEUNG ON LEE* AND YONG HO YON **

ABSTRACT. In this paper, we define A-structure, \/-structure to
generalize some lattices, and study the conditions that a lattice
which has A-structure or \/-structure to be continuous or algebraic.

1. Preliminaries

A set P equipped with a partial order ‘<’ is said to be a poset.
For any set X, the set of all finite subsets of X is denoted by FinX.

DEFINITION 1.1. Let P be a poset and D C P. D is said to be
directed if X has an upper bound in D for every X € FinD.

By the definition of a directed set every directed set is nonempty,
because () € FinD.

A lattice means a bounded lattice in this paper, i. e., a lattice which
has 0 and e.

For terminology not introduced in this paper, we refer to [2, 4].

LEMMA 1.2. Let P be a poset. Then P has \S (\/ S, resp.) for
every S C P if and only if P is a complete lattice with \/ S = J S*
(NS =\ S, resp.), where S* (S!, resp.) is the set of all upper bounds
(all lower bounds, resp.) of S.

Further discussions of the fundamentals of a lattice can be found in
[1, 3, 5].

DEeFINITION 1.3. Let L be a complete lattice. Then we have the
following;:

(1) L is called meet-continuous if it satisfies : xA(\/ D) = \/{zAd | d €
D} for all x € L and all directed subset D of L.

(2) L is called a frame if it satisfies : z A (\/S) = V{z As|s e S}
forallz € L and all S C L.
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(3) For z,y € L, x is said to be way below y, denoted by x < vy, if for
any directed subset D of L with y <\/ D, there is d € D with z < d.

If x < z, then zx is said to be a compact element of L.

(4) L is said to be continuous if z =\/ |, x for all z € L,

where |, v ={y € Lly < z} .

(5) L is said to be algebraic if x = \/(] x N K(L)) for all x € L,

where |z ={ye L |y <z} and K(L) ={x € L|z < z}.

DEFINITION 1.4. Let P and @ be posets. A map f: P — @ is said
to be

(1) monotone if x <y in P implies f(z) < f(y) in @Q;
(2) order-embedding if x <y in P if and only if f(z) < f(y) in Q;
(3) order-isomorphism if it is an order-embedding map P onto Q.

If there exists an order-isomorphism from P to (), then we say that P
and () are isomorphic and write P = Q).

If f: P — @ is an order-embedding map, then f is a monotone
1-1 map. But the converse need not be true. For P = {0, a,b, e} with
0<a<e 0<b<eandalb (ie., a and b are non-comparable) and
Q = {0,z,y,e} with 0 <z <y < e, amap f: P — @ defined by:
f(0) =0, f(a) ==, f(b) =y, f(e) = e, is monotone and 1-1, but not
order-embedding, because f(a) < f(b) but al|b.

DEFINITION 1.5. Let (P, <p) and (@, <q) be posets. We say that a
pair (f,g) of maps f: P — @Q and g : @ — P is an adjunction (or Galois
connection), denoted by f - g, between P and @ if

(1) f and g are monotone,

(2) f(p) <@ qif and only if p <p g(q) forallp e P, g € Q.
If (f,g) is an adjunction, then f is called the left adjoint of g and g is
the right adjoint of f.

DEFINITION 1.6. A map ¢ : P — P is said to be a closure operator
on a poset P if ¢ is a monotone, idempotent self map with 1p < c.

EXAMPLE 1.7. (1) Let P be a poset. Then ¢: P — P is a closure
operator on P if and only if (¢°,4) is an adjunction between P and ¢(P),
where i : ¢(P) — P is the inclusion map and ¢® : P — ¢(P) is the
corestriction of c.

(2) Let X = {1,2,3} and let P = P(X), where P(X) is the power
set lattice of X. We define a map ¢: P — P by c(z) = z U {2} for each
x € P. Then c is a closure operator.
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Let L and K be complete lattices. If f : L — K is a map, then we
define two maps f': K — L and f": K — L by :

flly)=MzeL|y<f(z)} and f(y)=V{zelL| flz) <y}, for
each y € K.

For any map f : L — K of complete lattices L and K, f! (f", resp.)
need not be the left adjoint (the right adjoint, resp.) of f.

An order-embedding map on complete lattices preserves neither ar-
bitrary joins (including e) nor arbitrary meets (including 0) in general.

ExAaMPLE 1.8. (1) Let U be the usual topology on the set of all real
numbers R. If i : 4 — P(R) is the inclusion map, then 7 is an order-
embedding and preserves the top R and the bottom ().

IfS={1-1/n,14+1/n) €U | n € N}, then A;; S = int((S) =
0, where int(A) is the interior of A, hence i(A;,S) = i(0) = 0, but
Apw)i(S) = ({1 —1/n,1+1/n) | n € N} = {1}. Hence i does not
preserve arbitrary meets. If g : P(R) — U is the map given by g(X) =
int(X) for all X € P(R). Then g preserves arbitrary meets, so g has
the left adjoint ¢. Hence ¢ preserves arbitrary joins.

The map 4! : P(R) — U is not the left adjoint of i, because 7! ({1}) =
MGeu | {1} CG}=0 and 1p(R)({1}) = {1}, that is, 1pg) £ ii.

(2) Let V be the vector space R? over the real numbers R and SubV’
a complete lattice of all subspaces of V', and let Vi be the subspaces of
V' generated by a vector x. If i : SubV — P(V) is the inclusion map,
then ¢ is an order-embedding and preserves the top V', but it does not
preserve the bottom, because i({(0,0)}) = {(0,0)} # 0.

Ifi=(1,0), j = (0,1), then Vi Vg Vj = R? since R? is the smallest
subspace containing V; and Vj, hence i(V;) Vpy) i(Vj) = iU V; £ R? =
i(R?*) = i(Vi Vsuwy Vj). Let g : P(V) — SubV be the map given by
g(X) = [X] for all X € P(V), where [X] is the subspace of V' generated
by the set X.

Then 7 is the right adjoint of g, and hence 7 preserves arbitrary meets.

The map i" : P(V) — SubV is not the right adjoint of i, because

i ({iHWi £ {i} = Lp)({i}), that is, " £ Lp(y).

We remark that the complete lattice SubV of all subspaces of a vector
space V is not a distributive lattice, hence not a frame. In fact, if
i=(1,0),j=(0,1) and x = (1,1) in the above example (2), then
ViA(ViVV;) = VxAR? = Vi, and (Ve AVR)V (VxAV;) = {(0,0)3v{(0,0)} =
{(0,0)}. But SubV is a meet-continuous lattice. So we can conclude that
a meet-continuous lattice need not be distributive.
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EXAMPLE 1.9. Let P = {0, a,e} be a chain with the partial order :
0 <a<e, andlet Q@ ={0,z,y,e} be a chain with the partial order :
O<z<y<e.

(1) If f : P — @ is the map defined by : f(0) =0, f(a) ==z, f(e) =e,
then f is order-embedding. If g : @ — P is the map defined by :
g9(0) =0, g(z) =a, g(y) =a, g(e) =e, then g is a left inverse of f, but
(fo)ly) =z <y =1¢(y), that is, 19 £ fg. It follows that g is not the
left adjoint of f.

(2)If f: P — @ is the map defined by : f(0) =0, f(a) =1y, f(e) =e,
then f is order-embedding. If ¢ : ) — P is the map defined by :
9(0) =0, g(z) =a, g(y) = a, g(e) = e, then g is a left inverse of f, but
lo(z) =2 <y = (fg)(x), that is, fg £ 1g. It follows that ¢ is not the
right adjoint of f

Let P and @ be posets and f : P — ) a monotone map. If D is a
directed subset of P, then f(D) is a directed subset of ). Thus we have:

ProprosITION 1.10. Let L and K be complete lattices and f : L — K
an order-embedding map which preserves directed joins.

If f(x) < f(y) in K, then © < y in L.

Proof. Suppose that f(z) < f(y) in K and let D be a directed subset
of L with y < \/ D. Since f is monotone and preserves directed joins,
fly) < f(VD) =V f(D) and f(D) is a directed subset of K.

Since f(z) < f(y), there is d € D with f(x) < f(d), and it implies
x < d € D because f is order-embedding. Hence x < y. O

ProrosITION 1.11. Let L and K be complete latticesand f : L — K
a map with f' 4 f which preserves directed joins. If x < y in K, then

fHe) < fiy) in L.

Proof. Suppose that x < y in K and D is a directed subset of L with
fYy) <V D. Since f' 4 f and f preserves directed joins, y < f(\/ D) =
V f(D) and f(D) is a directed subset of K.

Since z < ¥, there is d € D with z < f(d), and it implies f!(z) <
d € D. Hence fl'(z) < f'(y). O

The converse of the above proposition is not true in general.

ExXAMPLE 1.12. In Example 1.8-(2), the inclusion map i : SubV —
P(V) is an order-embedding and ! = g 4.

If D is a directed subset of SubV, then |JD € SubV, because if
u,v € |JD, then there are D,, and D, in SubV with u € D,, and v € D,,.
Since D is directed, there is D € D with D,, D, C D, hence u,v € D,
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and u+v € D CJD. And it is clear that av € |JD for all a € F' and
allv e |JD.

That is, we have g,y D = [UD] = UD = Vp)D. Hence i
preserves directed joins. It is clear that V; < V in SubV. But V; £ V
in P(V).

In fact, let A = {{x} € P(V) | x € V} and let F = {VF | F €
FinA} C P(V). Then F is a directed subset of P(V) with V' < \/ F,
but V; £ VF = UF for all F' € FinA since UF' is finite subset of V.

Hence we have that i'(V;) = V; < V = (V) in SubV, but i(V;) =
Vi€V =i(V)in P(V).

Let L and K be complete lattices and f : L. — K an order-embedding
map with f < f. If fL: f(L) — L is the restriction of f! to f(L), then
f% is an order-embedding since f.f = 1p.

ProPOSITION 1.13. Let L and K be complete lattices and f : L — K
an order-embedding map which preserves directed joins with f' = f .
Then y < f°(x) in f(L) if and only if fl(y) < = in L, where f°: L —
f(L) is the corestriction of f.

Proof. Let y < f°(x) in f(L). Then fl(y) = fi(y) < .

Conversely, suppose that f!(y) < z in L and D is a directed subset
of f(L) with f°(x) < \/D. Then we have z = 17(x) = flf°(z) <
LV D) =\ fUD). Since f!(y) < z and fL(D) is a directed subset
of L, there is d € D with fl(y) < fi(d). so y < d € D since f! is
order-embedding. Hence y < f°(x). O

2. A-structure and \/-structure

Let (P, <) be a poset and z,y € P. We say that x is covered by y (or
y covers x), denoted by x—< y or y >z, if z < y and z < z < y implies
z=zx.

Let L be a lattice and a € L. a is called an atom if 0 —< a. We
denote the set of all atoms in L by A(L).

A lattice L with atoms is said to be atomistic if = \/(] N A(L))
for all x € L.

The power set lattice P(L) of a complete lattice L is a frame; hence a
meet-continuous lattice, which is atomistic with A(P(L)) = {{z} | = €
L}. And the map |: L — P(L) (x ] ) is 1-1 and has the left adjoint
V:PL) — L (S — VS), that is, it is 1-1 meet-preserving map.
Hence we can consider a map (or 1-1 meet-preserving map) from L to
an atomistic meet-continuous lattice H.
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LEMMA 2.1. Let H be an atomistic meet-continuous lattice. If a €
A(H) with a <\/ D for any directed subset D of H, then there is d € D
with a < d.

Proof. Let D be a directed subset of an atomistic meet-continuous
lattice H and a an atom with a <\/ D. Then a =a A (\/ D) = V{a A
d|de D}.Since 0 <aAd<aforallde€ D and ais an atom, aAd = a
or aAd =0 for each d € D.

Ifand=0forallde D, thena=\{aAd|de D} =0. Itis a
contradiction to a # 0. Hence there is d € D with a A d = a, that is,
a<d. 0

By the above lemma, every atom in an atomistic meet-continuous
lattice H is compact, that is, A(H) C K(H).

Let L be a complete lattice and H an atomistic complete lattice. If
f: L — H is a map, then we denote E¢(L) = {f'(a) € L | a € A(H)}.

LEMMA 2.2. Let L be a complete lattice and H an atomistic complete
lattice.

If f: L — H a map with f' 4 f, then for any x € L we have the
following :

(1) LanEp(L) = (| f(z) VAH)),
(2) f(x) =V fz)NAH)) <V (L =0 Ef(L)).

Proof. (1) Let u €| 2N Ef(L). Then there is a € A(H) with f!(a) =
u < .

Since f' 4 f, a < f(z). Hence a €| f(z) N A(H) and u = f'(a) €
P f(z) N ACH)).

Conversely, let u € f'(| f(x) N A(H)). Then there is a € A(H)
with @ < f(z) and v = f'(a). Since f! 4 f, u = f!(a) < x. Hence
uel xznEy(L).

(2) It is clear that f(z) = \/(] f(x) N A(H)) since H is an atomistic
lattice.

We need to show that \/(] f(z) NA(H)) <V f(l xNE¢(L)).

Since 1y < ffland | zNE¢(L) = fY(| f(z)NA(H)) by (1), we have

) =

V(L fe)nAH)) <V FF(LFe) N AH)) =V f(Lz N Eg(L)). O

ProPOSITION 2.3. Let L be a complete lattice, H an atomistic meet-
continuous lattice and f : L — H a map which preserves directed joins
with fl 4 f.

If v <V F <y for some F € Fin(| yN Ef(L)), then v < y in L.
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Proof. Suppose that F' € Fin(| y N Ey(L)) with x < VL F <y and
D is a directed subset of L with y < \/D. For each u € F, there
is a, € A(H) with f'(a,) = u. Since f is monotone which preserves
directed joins with f' 4 f, ay < f(u) < f(y) < f(V, D) = Vy [(D).
Since f(D) is directed, there is d € D with a, < f(d) .

Choose one element d,, in {d € D | a, < f(d)} and let S = {d, €
D | u € F} for each u € F. Since a,, < f(d,) for all d, € S and f! - f,
u = fYay,) < d, for each u € F. so x < VF = VS. Since S is a finite
subset of D, there is d € D with d, < d for all d, € S, so VS < d and
x<deD. Hence z < y. O

PROPOSITION 2.4. Let L be a complete lattice, H an atomistic meet-
continuous lattice and f : L — H a map with f' 4 f. Then f preserves
directed joins if and only if every element of E¢(L) is compact.

Proof. Suppose that f preserves directed joins and v € E¢(L). Let
D be a directed subset of L with w < \/ D. Then there is a € A(H)
with f!(a) = w. Since f! 4 f and f preserves directed joins, a <
fu) < f(\V; D) = Vg f(D). There is d € D with a < f(d). Hence
u= fla) < f{(f(d) <d, so u < u.

Conversely, suppose that u is a compact element for every u € E¢(L)
and D is a directed subset of L. Since f(\/;, D) > \/y f(D), it remain

to show that f(\/;, D) <\ f(D).

Let « = \/; D and a €| f(a) N A(H). Then a < f(a) implies
fia) < a =\, D. Since f'(a) is a compact element in L and D is
directed, there is d € D with f!(a) < d, hence a < f(d) < \/ f(D).
That is, a <\ f(D) for every a €| f(a)NA(H),so f(\/ D) = f(a) =
Vil fle) M A(H)) < Vg f(D). 0

DEFINITION 2.5. Let L and H be complete lattices. Then

(1) L is said to have a (A, f)-structure in H if there is an 1-1 map
f: L — H which preserves arbitrary meets.

(2) L is said to have a (\/, f)-structure in H if there is an 1-1 map
f : L — H which preserves arbitrary joins.

If L has a (A, f)-structure ((\/, f)-structure, resp.) in H, then f
is an order-embedding map and preserves the top element (the bottom
element, resp.); f(er) = f(ALD) = Apf(0) = Agd = ey. But f need
not preserve arbitrary joins (meets, resp.) as Example 1.8.

DEFINITION 2.6. Let L and H be complete lattices with L C H and
i: L — H the inclusion map.

(1) L is said to have a A-structure in H if i preserves arbitrary meets,
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(2) L is said to have a \/-structure in H if i preserves arbitrary joins.

Let L have a A-structure (\/-structure, resp.) in H. Then L has a
(A, %)-structure ((\/,%)-structure, resp.) in H since ¢ is 1-1, and A, S =
AgS (VS =VgS,resp) for every S C L, because A\, S =i(\,S) =
Ao i(5) = Nyt .

LEMMA 2.7. If L has a )\-structure (\/-structure, resp.) in a complete
lattice H, then for any S C L, \/; S >\ yS (AL S < Ay S, resp.) in
H.

Proof. Let ¢ : L — H be the inclusion map. Then ¢ is monotone,
hence, \/;, S =i(\/,S) > Vg i(S) =V S for any S C L.

The proof of A\; S <g Ay S for a \/-structure is the dual of this
proof. ]

Let L have a A-structure in H. Then the inclusion map i : L — H
preserves arbitrary meet and i 4 i. Since < z in for all z € L,
il(z) = NM{u€ L |z <i(u) =u} =uxforal z € L, that is, i\, = 1z,
where L : L — L is the restriction of i’ to L.

We denote @ = i'(a) for each a € A(H), thatis,a = AN{u € L|a < u},
and E(L)=E;(L)={a€ L |ac A(H)}.

PROPOSITION 2.8. Let L have a \-structure in an atomistic meet-
continuous lattice H. Then \/; D € L for every directed subset D of L
if and only if a is compact for every a € E(L).

Proof. Let D be a directed subset of L and \/;; D € L. Since D C L,
il(d) = d for all d € D, hence i'(D) = D. Since \/;; D € L and i
preserves arbitrary joins, \/; D = i'(\/; D) = \/; i'(D) = \/; D. Hence
we have i(\/; D) = \/, D = \Vy D = \/,i(D), that is, i preserves
directed joins, and we have the equivalence of this proposition. O

EXAMPLE 2.9. (1) The complete lattice IdR of all ideals of a ring
R has a A-structure in P(R) and for every directed subset D of IdR,
\/7;.( R) D = UD € IdR. By Proposition 2.8, every principal ideal is com-
pact in IdR.

In the same way, a subspace generated by a singleton set is compact
in the complete lattice SubV of all subspace of a vector space V/

(2) Let L = [0,1] be the complete chain with the usual order. We
consider the adjunction \/ - |, where | : L — P(L)(z —| =) and \/ :
P(L) — L(S + \/S). ['=V/, and | is 1-1 and preserves arbitrary meets.
Hence L has the (A, |)-structure in P(L).
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The singleton set {1} is an atom in P(L) and 1 = V{1} = i'({1}) €
E|(L), but 1 is not compact in L, hence | does not preserve directed
joins. In fact, if D = {1 —1/n | n € N}, then D is a directed subset of
Land | (V; D) = 11 =L, but Vo[ L (1= 1/n) [ ne N} = Uf L
(1-1/n) | neN}=10,1) # L.

LEMMA 2.10. Let L have a (/\, f)-structure in an atomistic complete
lattice H. Then x = \/(] x N E¢(L)) for every = € L.

Proof. From the definition of atomistic, f(z) = \/(| f(z) N A(H))
for all z € L. Since f' 4 f and f is order-embedding, f' preserves
arbitrary joins and f'f = 1y . Hence we have z = fl'f(z) = f{(\V(l
) AU = V110 7)1 AH) = VU 2 0 Ef(D) for every
z € L.

PROPOSITION 2.11. Let L have a (), f)-structure in an atomistic
meet-continuous lattice H. If x < y in L, then x < VF <y for some
FeFin(lynEg(L)).

Proof. Suppose that x < yin L. y = \/(|l y N Ef(L)), hence there is
F € Fin(] y N Ef(L)) such that z < Vi F, and we have VL,F' < \/, (]
yNE;(L)) <ysince FC | yNE¢(L) C |y. O

The converse of the above proposition is not true in general.

EXAMPLE 2.12. In Example 2.9-(2), A(P(L)) = {{z} | x € L}, and
E\(L) = {V{z} | {z} € A(P(L))} = {z | {z} € A(P(L))} = L, hence
we have | 1 NE|(L) =LNL=L. For FF={1} € Fin(| 1 NE|(L)),
1<VF <1 butl«£1.

PROPOSITION 2.13. Let L have a (A, f)-structure in an atomistic
meet-continuous lattice H. If f preserves directed joins, then the fol-
lowing are equivalent :

(1) z<yinL
(2) x <p VLF <py for some F € Fin(] yN E¢(L)).

Proof. 1t is clear from Proposition 2.3 and 2.11. 0

EXAMPLE 2.14. The complete lattice IdR of a ring has a /\-structure
in P(R). For every directed subset D of IdR, \/ppyD = UD € IdR,
and every principal ideal is compact. Hence we have that I < J in IdR
if and only if I < VF < J for some F € Fin({(x) | = € R}), where (z)
is the principal ideal of R generated by x € R.

In the same way, let SubV be the complete lattice of all subspaces of
a vector space V. Then U < V in SubV if and only if U < VF <V for
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some F € Fin({[v] | v € V}), where [v] is the subspace of V generated
by v e V.

PROPOSITION 2.15. Let L have a (A, f)-structure in an atomistic
meet-continuous lattice H. If f preserves directed joins, then L is con-
tinuous.

Proof. Suppose that f preserves directed joins, and let x € L. Then
for every a €] f(x) N A(H), a < a < f(z) by , and a < f(z). Hence
| f(x) N A(H) Cly f(), and it implies that | 2 N E¢(L) = f/(| f(z) N
A(H)) € (L, £(x)). Since f{(Ly f(2)) Clo 7, | 20 Ey(L) Cly v, and
we have x = \/(] N E¢(L)) < V(lw x) <o . Hence x = \/(ly ), and
L is continuous. O

EXAMPLE 2.16. The complete lattices IdR and SubV are continuous.

PROPOSITION 2.17. Let L have a (A, f)-structure in an atomistic
meet-continuous lattice H. If every element of E¢(L) is compact, then
L is algebraic.

Proof. Suppose that every element of E¢(L) is compact. Then E¢(L) C
K(L), and
lxNEf(L) C | x Thus we have x = \/(| N K(L)). O

The converse of the above proposition is not true. In fact, L in
Example 2.9-(2) is algebraic, but 1 is not compact.
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