SOME STRUCTURES ON A COMPLETE LATTICE

SEUNG ON LEE* AND YONG HO YON **

ABSTRACT. In this paper, we define Λ -structure, V-structure to generalize some lattices, and study the conditions that a lattice which has Λ -structure or V-structure to be continuous or algebraic.

1. Preliminaries

A set P equipped with a partial order ' \leq ' is said to be a *poset*. For any set X, the set of all finite subsets of X is denoted by FinX.

DEFINITION 1.1. Let P be a poset and $D \subseteq P$. D is said to be directed if X has an upper bound in D for every $X \in FinD$.

By the definition of a directed set every directed set is nonempty, because $\emptyset \in FinD$.

A lattice means a bounded lattice in this paper, i. e., a lattice which has 0 and e.

For terminology not introduced in this paper, we refer to [2, 4].

LEMMA 1.2. Let P be a poset. Then P has $\bigwedge S$ ($\bigvee S$, resp.) for every $S \subseteq P$ if and only if P is a complete lattice with $\bigvee S = \bigwedge S^u$ ($\bigwedge S = \bigvee S^l$, resp.), where S^u (S^l , resp.) is the set of all upper bounds (all lower bounds, resp.) of S.

Further discussions of the fundamentals of a lattice can be found in [1, 3, 5].

DEFINITION 1.3. Let L be a complete lattice. Then we have the following:

- (1) L is called meet-continuous if it satisfies : $x \land (\bigvee D) = \bigvee \{x \land d \mid d \in D\}$ for all $x \in L$ and all directed subset D of L.
- (2) L is called a *frame* if it satisfies : $x \land (\bigvee S) = \bigvee \{x \land s \mid s \in S\}$ for all $x \in L$ and all $S \subseteq L$.

Received June 13, 2007.

2000 Mathematics Subject Classification: Primary 06A06, 06A11, 06A15.

Key words and phrases: adjunction, atomistic lattice, ∧-structure, V-structure.

- (3) For $x, y \in L$, x is said to be way below y, denoted by $x \ll y$, if for any directed subset D of L with $y \leq \bigvee D$, there is $d \in D$ with $x \leq d$.
 - If $x \ll x$, then x is said to be a compact element of L.
 - (4) L is said to be *continuous* if $x = \bigvee \downarrow_w x$ for all $x \in L$, where $\downarrow_w x = \{y \in L | y \ll x\}$.
 - (5) L is said to be algebraic if $x = \bigvee (\downarrow x \cap K(L))$ for all $x \in L$, where $\downarrow x = \{y \in L \mid y \leq x\}$ and $K(L) = \{x \in L \mid x \ll x\}$.

DEFINITION 1.4. Let P and Q be posets. A map $f:P\to Q$ is said to be

- (1) monotone if $x \le y$ in P implies $f(x) \le f(y)$ in Q;
- (2) order-embedding if $x \leq y$ in P if and only if $f(x) \leq f(y)$ in Q;
- (3) order-isomorphism if it is an order-embedding map P onto Q.

If there exists an order-isomorphism from P to Q, then we say that P and Q are *isomorphic* and write $P \cong Q$.

If $f: P \to Q$ is an order-embedding map, then f is a monotone 1-1 map. But the converse need not be true. For $P = \{0, a, b, e\}$ with 0 < a < e, 0 < b < e and $a \| b$ (i.e., a and b are non-comparable) and $Q = \{0, x, y, e\}$ with 0 < x < y < e, a map $f: P \to Q$ defined by: f(0) = 0, f(a) = x, f(b) = y, f(e) = e, is monotone and 1-1, but not order-embedding, because $f(a) \le f(b)$ but $a \| b$.

DEFINITION 1.5. Let (P, \leq_P) and (Q, \leq_Q) be posets. We say that a pair (f, g) of maps $f: P \to Q$ and $g: Q \to P$ is an adjunction (or Galois connection), denoted by $f \dashv g$, between P and Q if

- (1) f and g are monotone,
- (2) $f(p) \leq_Q q$ if and only if $p \leq_P g(q)$ for all $p \in P$, $q \in Q$.
- If (f,g) is an adjunction, then f is called the *left adjoint* of g and g is the *right adjoint* of f.

DEFINITION 1.6. A map $c: P \to P$ is said to be a *closure operator* on a poset P if c is a monotone, idempotent self map with $1_P \le c$.

- EXAMPLE 1.7. (1) Let P be a poset. Then $c: P \to P$ is a closure operator on P if and only if (c°, i) is an adjunction between P and c(P), where $i: c(P) \to P$ is the inclusion map and $c^{\circ}: P \to c(P)$ is the corestriction of c.
- (2) Let $X = \{1, 2, 3\}$ and let $P = \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the power set lattice of X. We define a map $c: P \to P$ by $c(x) = x \cup \{2\}$ for each $x \in P$. Then c is a closure operator.

Let L and K be complete lattices. If $f: L \to K$ is a map, then we define two maps $f^l: K \to L$ and $f^r: K \to L$ by :

 $f^l(y) = \bigwedge \{x \in L \mid y \leq f(x)\}$ and $f^r(y) = \bigvee \{x \in L \mid f(x) \leq y\}$, for each $y \in K$.

For any map $f: L \to K$ of complete lattices L and K, f^l (f^r , resp.) need not be the left adjoint (the right adjoint, resp.) of f.

An order-embedding map on complete lattices preserves neither arbitrary joins (including e) nor arbitrary meets (including 0) in general.

EXAMPLE 1.8. (1) Let \mathcal{U} be the usual topology on the set of all real numbers \mathbb{R} . If $i: \mathcal{U} \to \mathcal{P}(\mathbb{R})$ is the inclusion map, then i is an order-embedding and preserves the top \mathbb{R} and the bottom \emptyset .

If $S = \{(1 - 1/n, 1 + 1/n) \in \mathcal{U} \mid n \in \mathbb{N}\}$, then $\bigwedge_{\mathcal{U}} S = int(\bigcap S) = \emptyset$, where int(A) is the interior of A, hence $i(\bigwedge_{\mathcal{U}} S) = i(\emptyset) = \emptyset$, but $\bigwedge_{\mathcal{P}(\mathbb{R})} i(S) = \bigcap \{(1 - 1/n, 1 + 1/n) \mid n \in \mathbb{N}\} = \{1\}$. Hence i does not preserve arbitrary meets. If $g : \mathcal{P}(\mathbb{R}) \to \mathcal{U}$ is the map given by g(X) = int(X) for all $X \in \mathcal{P}(\mathbb{R})$. Then g preserves arbitrary meets, so g has the left adjoint i. Hence i preserves arbitrary joins.

The map $i^l: \mathcal{P}(\mathbb{R}) \to \mathcal{U}$ is not the left adjoint of i, because $ii^l(\{1\}) = \bigwedge \{G \in \mathcal{U} \mid \{1\} \subseteq G\} = \emptyset$ and $1_{\mathcal{P}}(\mathbb{R})(\{1\}) = \{1\}$, that is, $1_{\mathcal{P}(\mathbb{R})} \nleq ii^l$.

- (2) Let V be the vector space \mathbb{R}^2 over the real numbers \mathbb{R} and SubV a complete lattice of all subspaces of V, and let $V_{\mathbf{x}}$ be the subspaces of V generated by a vector \mathbf{x} . If $i: SubV \to \mathcal{P}(V)$ is the inclusion map, then i is an order-embedding and preserves the top V, but it does not preserve the bottom, because $i(\{(0,0)\}) = \{(0,0)\} \neq \emptyset$.
- If $\mathbf{i} = (1,0)$, $\mathbf{j} = (0,1)$, then $V_{\mathbf{i}} \vee_{SubV} V_{\mathbf{j}} = \mathbb{R}^2$ since \mathbb{R}^2 is the smallest subspace containing $V_{\mathbf{i}}$ and $V_{\mathbf{j}}$, hence $i(V_{\mathbf{i}}) \vee_{\mathcal{P}(V)} i(V_{\mathbf{j}}) = V_{\mathbf{i}} \cup V_{\mathbf{j}} \neq \mathbb{R}^2 = i(\mathbb{R}^2) = i(V_{\mathbf{i}} \vee_{SubV} V_{\mathbf{j}})$. Let $g : \mathcal{P}(V) \to SubV$ be the map given by g(X) = [X] for all $X \in \mathcal{P}(V)$, where [X] is the subspace of V generated by the set X.

Then i is the right adjoint of g, and hence i preserves arbitrary meets. The map $i^r: \mathcal{P}(V) \to SubV$ is not the right adjoint of i, because $ii^r(\{\mathbf{i}\})V_{\mathbf{i}} \not\leq \{\mathbf{i}\} = 1_{\mathcal{P}(V)}(\{\mathbf{i}\})$, that is, $ii^r \not\leq 1_{\mathcal{P}(V)}$.

We remark that the complete lattice SubV of all subspaces of a vector space V is not a distributive lattice, hence not a frame. In fact, if $\mathbf{i} = (1,0)$, $\mathbf{j} = (0,1)$ and $\mathbf{x} = (1,1)$ in the above example (2), then $V_{\mathbf{x}} \wedge (V_{\mathbf{i}} \vee V_{\mathbf{j}}) = V_{\mathbf{x}} \wedge \mathbb{R}^2 = V_{\mathbf{x}}$, and $(V_{\mathbf{x}} \wedge V_{\mathbf{i}}) \vee (V_{\mathbf{x}} \wedge V_{\mathbf{j}}) = \{(0,0)\} \vee \{(0,0)\} = \{(0,0)\}$. But SubV is a meet-continuous lattice. So we can conclude that a meet-continuous lattice need not be distributive.

EXAMPLE 1.9. Let $P = \{0, a, e\}$ be a chain with the partial order : 0 < a < e, and let $Q = \{0, x, y, e\}$ be a chain with the partial order : 0 < x < y < e.

- (1) If $f: P \to Q$ is the map defined by: f(0) = 0, f(a) = x, f(e) = e, then f is order-embedding. If $g: Q \to P$ is the map defined by: g(0) = 0, g(x) = a, g(y) = a, g(e) = e, then g is a left inverse of f, but $(fg)(y) = x < y = 1_Q(y)$, that is, $1_Q \not \leq fg$. It follows that g is not the left adjoint of f.
- (2) If $f: P \to Q$ is the map defined by : f(0) = 0, f(a) = y, f(e) = e, then f is order-embedding. If $g: Q \to P$ is the map defined by : g(0) = 0, g(x) = a, g(y) = a, g(e) = e, then g is a left inverse of f, but $1_Q(x) = x < y = (fg)(x)$, that is, $fg \not \leq 1_Q$. It follows that g is not the right adjoint of f

Let P and Q be posets and $f: P \to Q$ a monotone map. If D is a directed subset of P, then f(D) is a directed subset of Q. Thus we have:

PROPOSITION 1.10. Let L and K be complete lattices and $f: L \to K$ an order-embedding map which preserves directed joins.

If $f(x) \ll f(y)$ in K, then $x \ll y$ in L.

Proof. Suppose that $f(x) \ll f(y)$ in K and let D be a directed subset of L with $y \leq \bigvee D$. Since f is monotone and preserves directed joins, $f(y) \leq f(\bigvee D) = \bigvee f(D)$ and f(D) is a directed subset of K.

Since $f(x) \ll f(y)$, there is $d \in D$ with $f(x) \leq f(d)$, and it implies $x \leq d \in D$ because f is order-embedding. Hence $x \ll y$.

PROPOSITION 1.11. Let L and K be complete lattices and $f: L \to K$ a map with $f^l \dashv f$ which preserves directed joins. If $x \ll y$ in K, then $f^l(x) \ll f^l(y)$ in L.

Proof. Suppose that $x \ll y$ in K and D is a directed subset of L with $f^l(y) \leq \bigvee D$. Since $f^l \dashv f$ and f preserves directed joins, $y \leq f(\bigvee D) = \bigvee f(D)$ and f(D) is a directed subset of K.

Since $x \ll y$, there is $d \in D$ with $x \leq f(d)$, and it implies $f^l(x) \leq d \in D$. Hence $f^l(x) \ll f^l(y)$.

The converse of the above proposition is not true in general.

EXAMPLE 1.12. In Example 1.8-(2), the inclusion map $i: SubV \to \mathcal{P}(V)$ is an order-embedding and $i^l = g \dashv i$.

If \mathcal{D} is a directed subset of SubV, then $\bigcup \mathcal{D} \in SubV$, because if $u, v \in \bigcup \mathcal{D}$, then there are D_u and D_v in SubV with $u \in D_u$ and $v \in D_v$. Since \mathcal{D} is directed, there is $D \in \mathcal{D}$ with $D_u, D_v \subseteq D$, hence $u, v \in D$,

and $u + v \in D \subseteq \bigcup \mathcal{D}$. And it is clear that $\alpha v \in \bigcup \mathcal{D}$ for all $\alpha \in F$ and all $v \in \bigcup \mathcal{D}$.

That is, we have $\bigvee_{SubV} \mathcal{D} = [\bigcup \mathcal{D}] = \bigcup \mathcal{D} = \bigvee_{\mathcal{P}(V)} \mathcal{D}$. Hence i preserves directed joins. It is clear that $V_{\mathbf{i}} \ll V$ in SubV. But $V_{\mathbf{i}} \not\ll V$ in $\mathcal{P}(V)$.

In fact, let $\mathcal{A} = \{\{\mathbf{x}\} \in \mathcal{P}(V) \mid \mathbf{x} \in V\}$ and let $\mathcal{F} = \{\forall F \mid F \in Fin\mathcal{A}\} \subseteq \mathcal{P}(V)$. Then \mathcal{F} is a directed subset of $\mathcal{P}(V)$ with $V \subseteq \bigvee \mathcal{F}$, but $V_{\mathbf{i}} \not\leq \forall F = \cup F$ for all $F \in Fin\mathcal{A}$ since $\cup F$ is finite subset of V.

Hence we have that $i^l(V_i) = V_i \ll V = i^l(V)$ in SubV, but $i(V_i) = V_i \ll V = i(V)$ in $\mathcal{P}(V)$.

Let L and K be complete lattices and $f: L \to K$ an order-embedding map with $f^l \dashv f$. If $f^l_{\circ}: f(L) \to L$ is the restriction of f^l to f(L), then f^l_{\circ} is an order-embedding since $f^l_{\circ}f = 1_L$.

PROPOSITION 1.13. Let L and K be complete lattices and $f: L \to K$ an order-embedding map which preserves directed joins with $f^l \dashv f$. Then $y \ll f^{\circ}(x)$ in f(L) if and only if $f_{\circ}^l(y) \ll x$ in L, where $f^{\circ}: L \to f(L)$ is the corestriction of f.

Proof. Let $y \ll f^{\circ}(x)$ in $f(\underline{L})$. Then $f^{l}_{\circ}(y) = f^{l}(y) \ll x$.

Conversely, suppose that $f_{\circ}^{l}(y) \ll x$ in L and D is a directed subset of f(L) with $f^{\circ}(x) \leq \bigvee D$. Then we have $x = 1_{L}(x) = f_{\circ}^{l}f^{\circ}(x) \leq f_{\circ}^{l}(\bigvee D) = \bigvee f_{\circ}^{l}(D)$. Since $f_{\circ}^{l}(y) \ll x$ and $f_{\circ}^{l}(D)$ is a directed subset of L, there is $d \in D$ with $f_{\circ}^{l}(y) \leq f_{\circ}^{l}(d)$. so $y \leq d \in D$ since f_{\circ}^{l} is order-embedding. Hence $y \ll f^{\circ}(x)$.

2. \land -structure and \lor -structure

Let (P, \leq) be a poset and $x, y \in P$. We say that x is covered by y (or y covers x), denoted by $x \leftarrow y$ or y > -x, if x < y and $x \leq z < y$ implies z = x.

Let L be a lattice and $a \in L$. a is called an atom if 0 - < a. We denote the set of all atoms in L by A(L).

A lattice L with atoms is said to be atomistic if $x = \bigvee (\downarrow x \cap A(L))$ for all $x \in L$.

The power set lattice $\mathcal{P}(L)$ of a complete lattice L is a frame; hence a meet-continuous lattice, which is atomistic with $A(\mathcal{P}(L)) = \{\{x\} \mid x \in L\}$. And the map $\downarrow: L \to \mathcal{P}(L)$ $(x \mapsto \downarrow x)$ is 1-1 and has the left adjoint $\forall: \mathcal{P}(L) \to L$ $(S \mapsto \bigvee S)$, that is, it is 1-1 meet-preserving map. Hence we can consider a map (or 1-1 meet-preserving map) from L to an atomistic meet-continuous lattice H.

Lemma 2.1. Let H be an atomistic meet-continuous lattice. If $a \in$ A(H) with $a < \bigvee D$ for any directed subset D of H, then there is $d \in D$ with $a \leq d$.

Proof. Let D be a directed subset of an atomistic meet-continuous lattice H and a an atom with $a \leq \bigvee D$. Then $a = a \land (\bigvee D) = \bigvee \{a \land a \in A : a \in A :$ $d \mid d \in D$. Since $0 \le a \land d \le a$ for all $d \in D$ and a is an atom, $a \land d = a$ or $a \wedge d = 0$ for each $d \in D$.

If $a \wedge d = 0$ for all $d \in D$, then $a = \bigvee \{a \wedge d \mid d \in D\} = 0$. It is a contradiction to $a \neq 0$. Hence there is $d \in D$ with $a \wedge d = a$, that is, $a \leq d$.

By the above lemma, every atom in an atomistic meet-continuous lattice H is compact, that is, $A(H) \subseteq K(H)$.

Let L be a complete lattice and H an atomistic complete lattice. If $f: L \to H$ is a map, then we denote $E_f(L) = \{f^l(a) \in L \mid a \in A(H)\}.$

Lemma 2.2. Let L be a complete lattice and H an atomistic complete lattice.

If $f: L \to H$ a map with $f^l \dashv f$, then for any $x \in L$ we have the following:

- $(1) \downarrow x \cap E_f(L) = f^l(\downarrow f(x) \cap A(H)),$ (2) $f(x) = \bigvee (\downarrow f(x) \cap A(H)) \leq \bigvee f(\downarrow x \cap E_f(L)).$

Proof. (1) Let $u \in \downarrow x \cap E_f(L)$. Then there is $a \in A(H)$ with $f^l(a) =$

Since $f^l \dashv f$, $a \leq f(x)$. Hence $a \in \downarrow f(x) \cap A(H)$ and $u = f^l(a) \in A(H)$ $f^l(\downarrow f(x) \cap A(H)).$

Conversely, let $u \in f^l(\downarrow f(x) \cap A(H))$. Then there is $a \in A(H)$ with $a \leq f(x)$ and $u = f^l(a)$. Since $f^l \dashv f$, $u = f^l(a) \leq x$. Hence $u \in \downarrow x \cap E_f(L)$.

(2) It is clear that $f(x) = \bigvee (\downarrow f(x) \cap A(H))$ since H is an atomistic

We need to show that $\bigvee(\downarrow f(x) \cap A(H)) \leq \bigvee f(\downarrow x \cap E_f(L))$.

Since $1_H \leq ff^l$ and $\downarrow x \cap E_f(L) = f^l(\downarrow f(x) \cap A(H))$ by (1), we have $\bigvee (\downarrow f(x) \cap A(H)) \leq \bigvee ff^l(\downarrow f(x) \cap A(H)) = \bigvee f(\downarrow x \cap E_f(L)).$

Proposition 2.3. Let L be a complete lattice, H an atomistic meetcontinuous lattice and $f: L \to H$ a map which preserves directed joins with $f^l \dashv f$.

If $x \leq \vee_L F \leq y$ for some $F \in Fin(\downarrow y \cap E_f(L))$, then $x \ll y$ in L.

Proof. Suppose that $F \in Fin(\downarrow y \cap E_f(L))$ with $x \leq \vee_L F \leq y$ and D is a directed subset of L with $y \leq \bigvee D$. For each $u \in F$, there is $a_u \in A(H)$ with $f^l(a_u) = u$. Since f is monotone which preserves directed joins with $f^l \dashv f$, $a_u \leq f(u) \leq f(y) \leq f(\bigvee_L D) = \bigvee_H f(D)$. Since f(D) is directed, there is $d \in D$ with $a_u \leq f(d)$.

Choose one element d_u in $\{d \in D \mid a_u \leq f(d)\}$ and let $S = \{d_u \in D \mid u \in F\}$ for each $u \in F$. Since $a_u \leq f(d_u)$ for all $d_u \in S$ and $f^l \dashv f$, $u = f^l(a_u) \leq d_u$ for each $u \in F$. so $x \leq \forall F = \forall S$. Since S is a finite subset of D, there is $d \in D$ with $d_u \leq d$ for all $d_u \in S$, so $\forall S \leq d$ and $x \leq d \in D$. Hence $x \ll y$.

PROPOSITION 2.4. Let L be a complete lattice, H an atomistic meet-continuous lattice and $f: L \to H$ a map with $f^l \dashv f$. Then f preserves directed joins if and only if every element of $E_f(L)$ is compact.

Proof. Suppose that f preserves directed joins and $u \in E_f(L)$. Let D be a directed subset of L with $u \leq \bigvee D$. Then there is $a \in A(H)$ with $f^l(a) = u$. Since $f^l \dashv f$ and f preserves directed joins, $a \leq f(u) \leq f(\bigvee_L D) = \bigvee_H f(D)$. There is $d \in D$ with $a \leq f(d)$. Hence $u = f^l(a) \leq f^l(f(d)) \leq d$, so $u \ll u$.

Conversely, suppose that u is a compact element for every $u \in E_f(L)$ and D is a directed subset of L. Since $f(\bigvee_L D) \geq \bigvee_H f(D)$, it remain to show that $f(\bigvee_L D) \leq \bigvee_H f(D)$.

Let $\alpha = \bigvee_L D$ and $a \in \downarrow f(\alpha) \cap A(H)$. Then $a \leq f(\alpha)$ implies $f^l(a) \leq \alpha = \bigvee_L D$. Since $f^l(a)$ is a compact element in L and D is directed, there is $d \in D$ with $f^l(a) \leq d$, hence $a \leq f(d) \leq \bigvee_H f(D)$. That is, $a \leq \bigvee_H f(D)$ for every $a \in \downarrow f(\alpha) \cap A(H)$, so $f(\bigvee_L D) = f(\alpha) = \bigvee_H (\downarrow f(\alpha) \cap A(H)) \leq \bigvee_H f(D)$.

Definition 2.5. Let L and H be complete lattices. Then

- (1) L is said to have a (\bigwedge, f) -structure in H if there is an 1-1 map $f: L \to H$ which preserves arbitrary meets.
- (2) L is said to have a (\bigvee, f) -structure in H if there is an 1-1 map $f: L \to H$ which preserves arbitrary joins.

If L has a (\bigwedge, f) -structure $((\bigvee, f)$ -structure, resp.) in H, then f is an order-embedding map and preserves the top element (the bottom element, resp.); $f(e_L) = f(\wedge_L \emptyset) = \wedge_H f(\emptyset) = \wedge_H \emptyset = e_H$. But f need not preserve arbitrary joins (meets, resp.) as Example 1.8.

DEFINITION 2.6. Let L and H be complete lattices with $L \subseteq H$ and $i: L \to H$ the inclusion map.

(1) L is said to have a \land -structure in H if i preserves arbitrary meets,

(2) L is said to have a \bigvee -structure in H if i preserves arbitrary joins.

Let L have a \bigwedge -structure (\bigvee -structure, resp.) in H. Then L has a (\bigwedge, i) -structure ((\bigvee, i) -structure, resp.) in H since i is 1-1, and $\bigwedge_L S = \bigwedge_H S$ ($\bigvee_L S = \bigvee_H S$, resp) for every $S \subseteq L$, because $\bigwedge_L S = i(\bigwedge_L S) = \bigwedge_H i(S) = \bigwedge_H S$.

LEMMA 2.7. If L has a \bigwedge -structure (\bigvee -structure, resp.) in a complete lattice H, then for any $S \subseteq L$, $\bigvee_L S \ge \bigvee_H S$ ($\bigwedge_L S \le \bigwedge_H S$, resp.) in H.

Proof. Let $i:L\to H$ be the inclusion map. Then i is monotone, hence, $\bigvee_L S=i(\bigvee_L S)\geq\bigvee_H i(S)=\bigvee_H S$ for any $S\subseteq L$.

The proof of $\bigwedge_L S \leq_H \bigwedge_H S$ for a \bigvee -structure is the dual of this proof.

Let L have a \bigwedge -structure in H. Then the inclusion map $i: L \to H$ preserves arbitrary meet and $i^l \dashv i$. Since $x \leq x$ in for all $x \in L$, $i^l(x) = \bigwedge \{u \in L \mid x \leq i(u) = u\} = x$ for all $x \in L$, that is, $i^l_{\circ} = 1_L$, where $i^l_{\circ}: L \to L$ is the restriction of i^l to L.

We denote $\hat{a} = i^l(a)$ for each $a \in A(H)$, that is, $\hat{a} = \bigwedge \{u \in L \mid a \leq u\}$, and $E(L) = E_i(L) = \{\hat{a} \in L \mid a \in A(H)\}.$

PROPOSITION 2.8. Let L have a \bigwedge -structure in an atomistic meet-continuous lattice H. Then $\bigvee_H D \in L$ for every directed subset D of L if and only if \hat{a} is compact for every $\hat{a} \in E(L)$.

Proof. Let D be a directed subset of L and $\bigvee_H D \in L$. Since $D \subseteq L$, $i^l(d) = d$ for all $d \in D$, hence $i^l(D) = D$. Since $\bigvee_H D \in L$ and i^l preserves arbitrary joins, $\bigvee_H D = i^l(\bigvee_H D) = \bigvee_L i^l(D) = \bigvee_L D$. Hence we have $i(\bigvee_L D) = \bigvee_L D = \bigvee_H D = \bigvee_L i(D)$, that is, i preserves directed joins, and we have the equivalence of this proposition. □

EXAMPLE 2.9. (1) The complete lattice IdR of all ideals of a ring R has a \bigwedge -structure in $\mathcal{P}(R)$ and for every directed subset \mathcal{D} of IdR, $\bigvee_{\mathcal{P}(R)} \mathcal{D} = \cup \mathcal{D} \in IdR$. By Proposition 2.8, every principal ideal is compact in IdR.

In the same way, a subspace generated by a singleton set is compact in the complete lattice SubV of all subspace of a vector space V

(2) Let L = [0,1] be the complete chain with the usual order. We consider the adjunction $\bigvee \dashv \downarrow$, where $\downarrow : L \to \mathcal{P}(L)(x \mapsto \downarrow x)$ and $\bigvee : \mathcal{P}(L) \to L(S \mapsto \bigvee S). \downarrow^l = \bigvee$, and \downarrow is 1-1 and preserves arbitrary meets. Hence L has the (\bigwedge, \downarrow) -structure in $\mathcal{P}(L)$.

The singleton set $\{1\}$ is an atom in $\mathcal{P}(L)$ and $1 = \vee \{1\} = i^l(\{1\}) \in E_{\downarrow}(L)$, but 1 is not compact in L, hence \downarrow does not preserve directed joins. In fact, if $D = \{1 - 1/n \mid n \in \mathbb{N}\}$, then D is a directed subset of L and $\downarrow (\bigvee_L D) = \downarrow 1 = L$, but $\bigvee_{\mathcal{P}(L)} \{\downarrow (1 - 1/n) \mid n \in \mathbb{N}\} = \bigcup \{\downarrow (1 - 1/n) \mid n \in \mathbb{N}\} = [0, 1) \neq L$.

LEMMA 2.10. Let L have a (\bigwedge, f) -structure in an atomistic complete lattice H. Then $x = \bigvee (\downarrow x \cap E_f(L))$ for every $x \in L$.

Proof. From the definition of atomistic, $f(x) = \bigvee(\downarrow f(x) \cap A(H))$ for all $x \in L$. Since $f^l \dashv f$ and f is order-embedding, f^l preserves arbitrary joins and $f^l f = 1_L$. Hence we have $x = f^l f(x) = f^l(\bigvee(\downarrow f(x) \cap A(H))) = \bigvee f^l(\downarrow f(x) \cap A(H)) = \bigvee(\downarrow x \cap E_f(L))$ for every $x \in L$.

PROPOSITION 2.11. Let L have a (\bigwedge, f) -structure in an atomistic meet-continuous lattice H. If $x \ll y$ in L, then $x \leq \vee_L F \leq y$ for some $F \in Fin(\downarrow y \cap E_f(L))$.

Proof. Suppose that $x \ll y$ in L. $y = \bigvee (\downarrow y \cap E_f(L))$, hence there is $F \in Fin(\downarrow y \cap E_f(L))$ such that $x \leq \vee_L F$, and we have $\vee_L F \leq \bigvee_L (\downarrow y \cap E_f(L)) \leq y$ since $F \subseteq \downarrow y \cap E_f(L) \subseteq \downarrow y$.

The converse of the above proposition is not true in general.

EXAMPLE 2.12. In Example 2.9-(2), $A(\mathcal{P}(L)) = \{\{x\} \mid x \in L\}$, and $E_{\downarrow}(L) = \{ \lor \{x\} \mid \{x\} \in A(\mathcal{P}(L)) \} = \{x \mid \{x\} \in A(\mathcal{P}(L)) \} = L$, hence we have $\downarrow 1 \cap E_{\downarrow}(L) = L \cap L = L$. For $F = \{1\} \in Fin(\downarrow 1 \cap E_{\downarrow}(L))$, $1 \leq \lor F \leq 1$, but $1 \nleq 1$.

PROPOSITION 2.13. Let L have a (\bigwedge, f) -structure in an atomistic meet-continuous lattice H. If f preserves directed joins, then the following are equivalent:

- (1) $x \ll y$ in L
- (2) $x \leq_L \vee_L F \leq_L y$ for some $F \in Fin(\downarrow y \cap E_f(L))$.

Proof. It is clear from Proposition 2.3 and 2.11.

EXAMPLE 2.14. The complete lattice IdR of a ring has a \bigwedge -structure in $\mathcal{P}(R)$. For every directed subset \mathcal{D} of IdR, $\bigvee_{\mathcal{P}(R)} \mathcal{D} = \bigcup \mathcal{D} \in IdR$, and every principal ideal is compact. Hence we have that $I \ll J$ in IdR if and only if $I \leq \vee \mathcal{F} \leq J$ for some $\mathcal{F} \in Fin(\{(x) \mid x \in R\})$, where (x) is the principal ideal of R generated by $x \in R$.

In the same way, let SubV be the complete lattice of all subspaces of a vector space V. Then $U \ll V$ in SubV if and only if $U \leq \vee \mathcal{F} \leq V$ for

some $\mathcal{F} \in Fin(\{[v] \mid v \in V\})$, where [v] is the subspace of V generated by $v \in V$.

PROPOSITION 2.15. Let L have a (\bigwedge, f) -structure in an atomistic meet-continuous lattice H. If f preserves directed joins, then L is continuous.

Proof. Suppose that f preserves directed joins, and let $x \in L$. Then for every $a \in \downarrow f(x) \cap A(H)$, $a \ll a \leq f(x)$ by , and $a \ll f(x)$. Hence $\downarrow f(x) \cap A(H) \subseteq \downarrow_w f(x)$, and it implies that $\downarrow x \cap E_f(L) = f^l(\downarrow f(x) \cap A(H)) \subseteq f^l(\downarrow_w f(x))$. Since $f^l(\downarrow_w f(x)) \subseteq \downarrow_w x$, $\downarrow x \cap E_f(L) \subseteq \downarrow_w x$, and we have $x = \bigvee(\downarrow x \cap E_f(L)) \leq \bigvee(\downarrow_w x) \leq x$. Hence $x = \bigvee(\downarrow_w x)$, and L is continuous.

Example 2.16. The complete lattices IdR and SubV are continuous.

PROPOSITION 2.17. Let L have a (\bigwedge, f) -structure in an atomistic meet-continuous lattice H. If every element of $E_f(L)$ is compact, then L is algebraic.

Proof. Suppose that every element of $E_f(L)$ is compact. Then $E_f(L) \subseteq K(L)$, and

$$\downarrow x \cap E_f(L) \subseteq \downarrow x$$
 Thus we have $x = \bigvee (\downarrow x \cap K(L))$.

The converse of the above proposition is not true. In fact, L in Example 2.9-(2) is algebraic, but 1 is not compact.

References

- B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge University Press, Cambridge, 1990.
- [2] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
- [3] G. Grätzer, General lattice theory, Academic press, inc. New York, 1978.
- [4] P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics No. 3, Cambridge University Press, 1982.
- [5] D. S. Scott, Continuous lattices, Lect. Notes in Math., 274, Springer Verlag, 1972, 97-136.

*

Department of Mathematics Chungbuk National University, Chungbuk 361-763, Republic of Korea Research Institute of Mathematical Science E-mail: solee@chungbuk.ac.kr

**

Engineering Education Innovation Center Mokwon University Daejeon, 302-729, Republic of Korea *E-mail*: yhyon@mokwon.ac.kr